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Abstract

With rapid mergers of computer, communications, and entertainment industries, we can 

expect a trend of growing heterogeneity (in channel bandwidth, receiver capacity, etc.) for 

future digital video coding applications. Furthermore, some new functions appear, such as 

object manipulation, which should be supported by the video coding techniques. The 

traditional video coding approach is very constrained and inefficient to the heterogeneity 

issue and user interaction. Scalable coding, allowing partial decoding at a variety of resolution, 

temporal, quality, and object levels from a single compressed codestream, is widely 

considered as a promising technology for efficient signal representation and transmission in a 

heterogeneous environment. However, although several scalable algorithms have been 

proposed in the literature and the international standards over the last decade, further research 

is necessary to improve the compression performance of scalable video coding.

This thesis investigates scalable 2D model-based video coding method with efficient video 

compression as well as excellent scalability performance, in order to satisfy the newly 

appeared requirements. It first examines main model-based video coding techniques and 

scalable video coding methods. Also, the parametric video models that describe the real world 

and image generation process are briefly described.

Next, video segmentation algorithms are investigated to semantically represent the video 

frame into video objects. At the first frame, the texture information and the motion from first 

several frames are used to extract the senmntic foreground objects. For some sequences, user 

interaction is required to get semantic objects. In later frames, the proposed complexity- 

scalable contour-tracking algorithm is used to segment each frame. After that, each object is 

progressively approximated using three-layer 2D mesh model. In order to represent the 

motion of human face more precisely, face detection and modelling are also investigated. Tliis 

technique, in which human face is modelled separately, is shown to produce improvements of 

object motion representation.

Scalable model compression is also outlined in this thesis. Object model is represented into 

two parts: object shape and interior object model, which are compressed separately. A 

scalable contour approximation algorithm is proposed. Both intra- and predictive scalable 

shape-coding algorithms are investigated and proposed to code the object shape progressively.



The encoded coarser layers are used to improve the coding efficiency of the current layer. The 

effectiveness of these algorithms is demonsti ated tlirough the results of extensive experiments.

We also investigate the scalable texture coding of video objects. An improved shape-adaptive 

SPECK algorithm is employed in intra-texture coding and is also used for residual texture 

coding after motion compensated temporal filtering. During motion compensated temporal 

filtering, scalable mesh object model is used, and scalable motion vector coding is achieved 

using CABAC codec. A hierarchically structured bitstream is created, which is optimised for 

rate-distortion, to facilitate efficient bit truncation and bit allocation among video frames and 

video objects. The coding system can encode/decode the video object independently and 

generate a separate bit stream for each object. As is exhibited in our experiments, such a high 

coding scalability in the proposed coding system is achieved without a significant cost in 

compression performance commonly experienced in most scalable coding systems.

Key words: Model-based video coding, scalable video coding, video processing and 

segmentation, vertex-based shape coding, motion compensated temporal filtering (MCTF).
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Chapter 1.Introduction

Chapter 1

Introduction

1.1 Preamble

Currently, multimedia technology provides content creators and consumers with a myriad of 

coding, access, and distribution possibilities. At the same time, communication infrastructure is 

being put into place to enable access to information and multimedia services from almost 

anywhere at anytime. These make the Universal Multimedia Access possible. In order to achieve 

an efficient Universal Multimedia Access (UMA), video coding plays an important role, which 

should support several new functionalities, such as efficient scalable coding, and object 

manipulation.

Much research has been conducted for video coding. Some recently standardised video coders, 

such as MPEG-4 [MPEG4-2001] and H.264 [H264-2003], can compress the video efficiently. For 

example, H.264 can save about 50% of total bits when compared with MPEG-2. However, these 

coders utilise waveform-based video coding approaches, which are based on the combination of 

block-based motion compensation with Discrete Cosine Transform (DOT). One of the main 

problems of these now so-called first generation coding techniques is that they did not question 

the image representation structure imposed by the canonical representation of the image. These 

techniques use pixel or block of pixels as the basic entities that are coded. In addition, they also 

share in common the absence of consideration for the human visual system (HVS). These 

standardised video codecs, such as MPEG-4 and H.264, present severe limitations for very low 

bit-rate video coding applications.

In order to improve the visual performance of video coding, some totally different video coding 

methods are introduced, which are known as second generation video coding techniques 

[TORRES-1996], Based on the employed source models, these methods are divided into region- 

based video coding [ERYU-1995] [CZEREPINSKI-1997], object-based video coding [GERKIN- 

1994], knowledge-based video coding [KAMP-1997b] and semantic video coding [CHOI-1994].
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In fact, all of these methods can be uniformly considered as the model-based video coding 

because the encoders compress the video object-by-object, instead of pixel-by-pixel. The block 

diagram of these methods can be simply depicted in Figure 1.1

Input
Image

Analysis
Data

SynthesisAnalysis

Image Source 
Model

Image Source 
Model

Output
Image

Figure 1.1 -  General description of a model-based coding system

Model-based video coding has been an active area of research for a number o f years [AIZA-1995] 

[PEAR-1995]. It makes use of a variety of source models taking into account the structural 

features of the image. Semantic knowledge of the scene can be also exploited to achieve high 

efficiency when encoding video sequences for certain scenarios. In model-based video coding, 

both 2-D and 3-D models are employed at various levels of complexity and accuracy to provide 

the optimal match between the video scene and the employed model. Therefore, the video frames 

are described by specifying 2D and/or 3D motion and deformation of the. objects in the scene. 

Since only a few parameters are necessary to qualify the temporal changes, extremely low bit-rate 

can be achieved. Good compression performance has been achieved at very low bit rates with a 

model-aided coder [EISERT-2000]. Compared to DCT-based video coders, model-based video 

coding does not show any blocking artefacts at low data rates.

However, for model-based video coding, 3D model-based codecs have a major disadvantage in 

that they can only be used for sequences in which the foreground object closely matches the pre­

defined reference model. 3D model-based video coding techniques are too rigidly object-specific 

because the extraction of 3D structure from single objects in an unrestricted environment and the 

efficient modelling of their surfaces are extremely difficult tasks. However, modeling objects is a 

very important issue in model-based video coding as the complexity of analysis and synthesis 

depends on the adopted model. Therefore, at present, 3D model-based video coding is just applied 

for coding head-shoulder sequences [LI-1993][PEAR-1995]. 3D model-based video coding has 

another disadvantage that it is very sensitive to channel errors [WORRALL-2002]. As the 

transmitted parameters will be employed by the decoder to synthesise the original frames, the 

error of these parameters will affect the final synthesis performance.
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Much research has also focused on 2D model-based video coding [ALTUNB-1997] [TEKALP- 

1997]. Compared with 3D model-based video coding, 2D model has several advantages:

• 2D model-based video coding is rather universal and not limited to head-shoulder 

sequences. 2D mesh models (unlike 3D wireframe models) can be easily designed for 

arbitrary scenes.

• 2D parametric motion estimation is a better-posed problem than 3D motion and structure 

estimation. Therefore, the analysis process o f 2D model-based video coding is much easier 

than that of 3D model-based video coding.

Although a priori knowledge of objects can be used to improve the efficiency o f 3D model-based 

video coding, it can also be used efficiently to improve 2D model design and object coding. 

Research results show that 2D model-based coding with affine / perspective transformation and 

triangular mesh models can simulate almost all capabilities of 3D model-based approaches using 

wireframe models at a fraction of the computational cost [ALTUNB-1997] [TEKALP-1997].

1.2 Objective and overall project description

The objective of this thesis is to develop an efficient scalable 2D model-based video coding 

scheme, which tries to achieve scalable video coding with high compression efficiency and 

improve the scalability of model-based video coding. The application of 2D object model is to 

overcome the reduced generality o f 3D object model. Moreover, research results show that 2D 

model-based coding can simulate almost all capabilities of 3D model-based approaches at a 

fraction of the computational cost. The investigation of scalable coding is to increase the 

robustness of transmission of the generated bitstreams, which also facilitate the achievement of 

new functionalities, such as Universal Multimedia Access (UMA) [BORMANS-2003].

To achieve this objective, the overall project will include the following parts:

• Video segmentation and scalable modelling

Video segmentation and modeling are one of the important steps to achieve model-based 

video coding. In order to model the video frames using video objects, accurate and semantic 

video segmentation is necessary and important. Currently, much research has been 

conducted for video segmentation. Most segmentation algorithms use the low-level
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features, such as motion or colour information, to distinguish the video object from a video 

frame. The main problem of these algorithms is the accuracy of segmentation results. 

Further research is required to achieve accurate (semi-) automatic and semantic video 

segmentation. In order to improve the coding performance of 2D model-based video 

coding, a priori knowledge of special objects, such as human face, can be employed. To 

achieve this, face detection and facial feature extraction is also investigated in this project. 

After getting the video objects, scalable object modelling is also an important step for 2D 

model-based video coding. The designed object model should represent the object model 

motion precisely. The accuracy of modelling will affect its compression performance.

• Scalable compression of object model

Scalable object model compression is one o f the major issues in scalable 2D model-based 

video coding scheme. In this project, the compression of object model includes both interior 

model compression and model contour compression (or shape coding). In shape coding, 

content-adaptive arithmetic encoding (CAE) and chain coding techniques are widely used. 

The CAE scheme is well integrated into the current MPEG-4 scheme. Commonly, it costs 

several kbits to encode the model of each object. For scalable shape coding, the CAE 

technique shows a visually annoying staircase effect [BRADY-1997]. Further research is 

needed to improve the encoding performance and scalability of object shape.

• Scalable texture coding of video objects

Scalable texture coding is another major issue in scalable 2D model-based video scheme. In 

past decades, there have been continuous efforts in developing techniques for arbitrarily 

shaped video objects. In MPEG-4, shape-adaptive DCT (SA-DCT) scheme is used to 

encode die texture of video objects. However, there are several disadvantages of the SA- 

DCT technique. First, it inherits the blocking effect from the DCT. Second, in the 

implementation of SA-DCT, the alignment of the coefficients destroys the spatial 

correlation to some extent. Therefore, the coding efficiency is degraded. Experimental 

results show that SA-DCT performance is inferior to that of shape-adaptive wavelet-based 

scheme [SHIPENG-2000]. Recently, many wavelet-based texture-coding algorithms have 

been extended to shape-adaptive object texture coding [EGGER-1996] [KIMJ-1998] 

[SHIPENG-2000]. Further research is necessary to improve its coding efficiency as well as 

its scalability.
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1.3 Source M aterial and Performance Evaluation

The colour video sequences used in the performance evaluation o f the simulated techniques and 

algorithms are the conventional ITU test sequences. In order to test the efficiency of the 

developed scalable 2D model-based video coding algorithms, various test sequences with 

different properties have been utilised, such as Foreman, Carphone, Claire, AMyo, News, 

Motr dhtr, Coastguard sequences. For Foreman, Carphone, Claire and AMyo sequence, human 

face is considered as a separate object and modelled separately, which is different fi'om News, 

Motr_dhtr and Coastguard sequences.

On the other hand, to evaluate the performance of the proposed video coding algorithms, both 

subjective and objective methods have been adopted. The performance o f the considered video 

algorithm can be evaluated by simply comparing the original and the reconstructed video 

sequences. However, the subjective evaluation is more desirable even though it requires a number 

of users to spend much time to view and compare a number of different decoded video sequences.

The most common objective method for comparing video quality is to use the Peak-to-peak 

Signal to Noise Ratio (PSNR) equation. This equation for PSNR is shown below:

PSNR = moĝ Q 255%

\ m x N

(1.1)

where M  and N  stand for the dimension of the video sequence. For QCIF (Quarter Common 

Intermediate Format) sequence, these variables are always 176 and 144.

For a fair performance evaluation of a video-coding algorithm, the bitrate must also be included. 

The output bitrate of video coders is expressed in bits per second (bits/s). Since the bitrate is 

directly proportional to the number of frames per second, the frame rate should also be mentioned 

during the evaluation process.
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1.4 Original Achievements

A number of publications and patents have been produced as a result of the research that is 

described here. These papers and patents are listed in Appendix A. In this thesis, work that is 

believed to be original can be summarised as:

• Video segmentation: A video segmentation scheme is proposed in our research. We 

formulate the video segmentation as two sub-problems: semi-automatic video object 

extraction from the first video frame, and automatic video object extraction from the video 

sequence based on the available object model. A complexity-scalable contour-tracking 

algorithm is proposed, which makes the segmentation robust to large motion pattern and 

partial occlusion.

Face detection and modeling: Face detection and facial feature extraction (including eye, 

mouth and chin) are extensively investigated. An automatic face detection algorithm is 

proposed to robustly extract the facial features automatically. After that, a heuristic scalable 

2D face model scheme is developed to construct the model using the facial features and 

facial muscle distribution.

Scalable shape coding: Both intra- and inter- shape-coding schemes are extensively 

investigated. A scalable approximation scheme is proposed to present the object shape, in 

which curvature scale space (CSS) image is used to get the contour salient features. A novel 

scalable iiitra-shape coding scheme is developed in which the information from the coarser 

encoded layers is employed to improve the coding efficiency of the current layer. A 

predictive scalable shape-coding scheme is also proposed to improve the coding efficiency 

further due to the use of temporal information. In the predictive shape-coding scheme, 

contour motion is estimated through CSS image matching. Experimental results 

demonstrate that the proposed shape coding algorithms can achieve better R-D 

performance.

Wavelet-based object texture intra-coding: An improved shape-adaptive SPECK algorithm 

is proposed to improve the coding efficiency of the original shape-adaptive SPECK 

algorithm [LU-2001], in which context-adaptive binary arithmetic codec (CABAC) is 

incorporated. Experimental results show the efficiency of the improved algorithm. It is 

about 0.1-0.4 dB improvements when compared with the original shape-adaptive SPECK
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algorithm. The proposed algorithm is used to code “I-ftame” and residual frames after 

motion compensation.

•  A highly scalable 2D model-based texture-coding scheme is proposed. In this scheme, 

lifting-based temporal filtering is conducted for video objects. During temporal filtering, 

warping motion compensation is used, instead of blocking-based motion compensation, to 

reduce the blocking artefact. After temporal filtering, the object texture and residual frames 

are encoded using the improved shape-adaptive SPECK algorithm. A scalable MV 

encoding scheme is proposed and rate-distortion optimised bit truncation scheme is 

employed to achieve bit allocation among the frames within group-of-picture (GOP). The 

proposed scheme can achieve high coding efficiency and exact bit rate control. It can also 

achieve temporal, spatial, quality and object scalability simultaneously.

1.5 Structure of Thesis

This first chapter aims to introduce the background and reasons behind the work. It also describes 

some of the methodology used to evaluate the compression performance and outlines some of the 

original achievements of the work featured in this thesis. The final chapter summarises the 

research work that has been performed. It also examines the potential for future research in this 

area. A list of publications and patents associated with the author is given in the Appendix A. The 

other chapters are summarised below.

1.5.1 Chapter 2

Chapter 2 acts as background for 2D scalable model-based video coding. Main scalable and 

model-based video coding techniques are reviewed. First, main video modelling techniques are 

discussed, which includes camera, illustration, video object and video scene. Then, both 2D and 

3D model-based video coding techniques are reviewed and discussed. After that, main scalable 

video coding techniques are reviewed. They are quality scalability, spatial and temporal 

scalability, fine-granularity scalability, object-based scalability and wavelet-based scalable 

coding.

1.5.2 Chapter 3

The third chapter introduces the video segmentation techniques, which is one of the most 

important steps for scalable 2D model-based video coding scheme. After reviewing the video
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segmentation techniques, a novel and original video segmentation technique is proposed. The 

proposed algorithm includes: semi-automatic video object extraction from the first video frame; 

and automatic video object extraction from the video sequence based on contour-tracking 

algorithm. A complexity-scalable contour-tracking algorithm is proposed, which makes the 

segmentation robust to large motion pattern and partial occlusion. The proposed scheme is 

evaluated through extensive experiments.

1.5.3 Chapter 4

Chapter 4 mainly discusses the face detection techniques and scalable face modelling. The 

objective of face detection and modelling is to represent the face motion precisely and reduce the 

rendering error by using a prior knowledge in human face. After intensive review of state-of-the- 

art face detection techniques, an automatic face detection, scheme is proposed. The face detection 

scheme can localise face, face feature and human chin contour automatically and precisely. After 

detecting face features, a heuristic 2-D scalable face model is designed based on the detected face 

features and face muscular distribution. Experimental results show that the introduction of 

scalable face model can improve the accuracy for model-based motion estimation and 

compensation.

1.5.4 Chapter 5

In chapter 5, scalable object modelling and model compression techniques are reviewed and 

discussed. The scalable object model is divided into two parts: scalable shape contour and 

scalable model for object interior. In this chapter, a scalable shape representation algorithm is 

proposed in which curvature scale space (CSS) image is used to extinct the salient feature of 

contour. Both intra and inter shape coding techniques are investigated and a number of innovative 

shape coding algorithms are proposed to improve the shape coding performance.

1.5.5 Chapter 6

Chapter 6  mainly presents the algorithms for wavelet-based texture intra-coding of video objects. 

After introducing the principle and structure for subband/wavelet analysis and shape-adaptive 

wavelet transform, the author reviewed the main wavelet-based texture coding algorithms, such as 

SPIHT, SPECK and EBCOT algorithms. The extensions of these algorithms to object-based 

coding are then discussed. An improved object-based SPECK algorithm is proposed by 

incorporating Content-adaptive binary arithmetic codec (CABAC) to improve the texture coding
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performance of video objects. This algorithm is employed in Chapter 7 to encode the texture of 

“I-frame” and residual frames of video objects.

1.5.6 Chapter 7

In Chapter 7, scalable 2D model-based texture coding scheme is proposed and discussed. The 

detailed description o f this scheme is discussed after reviewing the state-of-the-art highly scalable 

coding schemes. In this proposed scheme, temporal filtering is first conducted by using motion 

compensation (MC) and wavelet lifting scheme. Then, warping motion compensation scheme is 

discussed and employed during temporal filtering, and a scalable motion vector compression 

scheme is proposed. Rate-distortion optimised bitstream truncation is discussed to achieve 

arbitrary bitrate coding. Extensive experiments and results are also presented in this chapter.

1.5.7 Chapter 8

The eighth chapter contains the overall conclusions for the thesis, and goes on to make 

recommendations for future work.
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Chapter 2 

Model-based and Scalable Video Coding: 

Overview

2.1 Video modelling

Before digital video processing and coding, we should understand the content of video sequence 

and describe them in terms of object motion and other effects, such as illumination changes and 

camera motion. In order to relate changes in the real world to changes in the video sequence, we 

need parametric models that describe the real world and image generation process, and the 

parameters can be estimated from the video sequences. The most important models to describe the 

real world are scene, object, camera and illumination models. Depending on the selected models, 

the real world can be described with more or less detail and precision. Using image analysis tools, 

the parameters of the parametric models can be estimated from the video sequence. The real 

world can be reconstructed and approximated using the parametric models and their estimated 

parameters.

In the following sections, the camera model, illumination model, object model and scene model 

are discussed. As the selected parametric object model will decide the coding method and affect 

the final coding performance and complexity, it will be discussed in detail.

2.1.1 Camera model

The camera model describes the projection of real objects in the real scene onto the image plane 

of the real camera. Two kinds of camera model are widely used. They are the pinhole camera 

model and the CAHV model (it is defined by C, A, Ho, Vq vectors as shown in Figure 2.2) [YAKI- 

1978].

The pinhole camera model has been widely used to approximate the projection of real objects on a 

real camera target, which is illustrated in Figure 2.1. In this Figure, F  represents the focal length

10
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of the camera, and C the focal centre. The projected position jc of a 3-D point X  is the intersection 

of the line cormecting X  and C with the image plane. Assume that the origin of the 3-D coordinate 

system is located at the focal centre and its ^ -p la n e  is parallel to the imaging plane. From the 

similar triangles illustrated in Figure 2.1 (a), it can be easily concluded that

X

~F Z

or x  = F x

F  Z  

X Y
y  =  F x  —

(2 .1)

(2.2)

This relation is known as perspective projection. A notable character of perspective projection is 

that the image of an object is smaller if it is further away from the camera. Mathematically, it is 

described by the inverse between the projected x, y  values and the depth value Z.

X y ^

(a)

Figure 2.1 -  Camera model: (a) using perspective projection in a pinhole camera; (b) using 

parallel projection as an approximation of a pinhole camera

If the image object is very far from the camera plane, perspective projection can be approximated 

by orthographic projection, which is also known as parallel projection (Figure 2.1 (b)):

x  = X , y  = Y (2.3)

Commonly, as long as the relative depth variation of the object surface is negligible compared to 

the distance of the object from the camera, this approximation can be used reliably.

The pinhole camera model with its perspective projection is only an approximation of most real 

cameras. It does not consider the misalignment o f the camera axis and the image centre, the low-

11
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pass filter effect of the finite size aperture of a real lens, the finite exposure time, and other 

distortions of the lens.

The CAHV camera model can describe a camera such that the camera motion can be 

accommodated and the camera can be calibrated to compensate for geometrical differences 

between the pinhole camera model and the real camera. The CAHV model describes perspective 

projection for a pinhole camera model using four vectors:

C: Vector to the camera centre;

A\ Unit vector in the direction of the optical axis;

H qI Unit vector in the direction of the horizontal axis of the imaging plane;

VqI Unit vector in the direction of the vertical axis of the imaging plane;

This geometry is depicted in Figure 2.2.

Centre of 
projection

I Image plane

I , ,
 1 _ Line of sight Sp

World coordinate 
system

Camera coordinate 
system

Figure 2.2 -  Perspective projection o f a point P  in space onto a point p  in the imaging plane using

the CAHV camera model [FORSYTH-2003].

Adapting the perspective projection of Equation (2.2) by projecting the vector (P - C) onto the 

camera axis A  and the imaging plane axis H q  and Vq, a point P  is projected onto the image point p  

according to [FORSYTH-2003]:

P  = (2.4)

The CAVT camera model can characterise a practical camera system by its extrinsic parameters C 

and A  and its intrinsic parameters H q, Vq, and F. These parameters enable us to describe an 

imaging plane that is off the camera axis, as well as distortion introduced by the optical system.

12
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Precise knowledge of camera parameters is useful when estimating 3-D shapes and motion from a 

video sequence. These parameters can be estimated by using geometric camera calibration 

techniques [FORSYTH-2003].

2.1.2 Illuminatioii model

In order to see an object, we need to illuminate the observed scene. Describing illumination and 

the reflection of light on object surfaces usually requires complexity models. An illumination 

model describes how the light incident on an object influences the reflected light distribution.

In video processing, the illumination model is mainly used to describe the temporal changes in the 

video sequence caused by the changing illumination of the real world. The illumination of a 

background may change because of an object that moves together with its cast shadow. Since the 

object surface reflects light, this reflecting source changes the overall illumination of the scene.

When discussing the interaction of a light source with an object surface, there are three types of 

energy involved. First, incident flux refers to the rate at which energy is emitted from the light 

source. Second, incident irradiance is the incident flux per unit surface area on the object. Finally, 

reflected radiance measures the light energy reflected from an object surface. The distribution of 

the reflected radiance C  depends on the distribution of incident irradiance E  and the object 

surface reflectance function r  at this point. The relation can be described by [WANG-2002]:

C a ,  V, N , X , t, à) = r{L, V, N , X , t, â)  ■ E[L, N , A', â)  , (2.5)

where X  is the location on the object surface, N  is the surface normal vector at the location X , 

L  is the illumination direction, V  is the viewing direction connecting X  to the focal point of the 

camera, and X is the wavelength of light [STAU-1993]. The reflectance function r depends on 

the wavelet length of the incident light, the surface geometry and material properties.

For an ambient source, it radiates the same amount of energy in every direction at any point. 

Hence, it illuminates objects without casting shadows. When the incident light is such an ambient 

source and the object surface is diffuse reflecting, the reflected radiance intensity distribution is:

C{X, t, X) = r{X, t, X) • E , {t, X) , (2.6)

where E^(t,X) represents the intensity of the ambient light at time t [WANG-2002].

13
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For a point light source, the reflected radiance intensity at X  simplifies to [WANG-2002]: 

C {x ,t,X )= r{X ,t,X )B ^{t,X ) .T m ix{o ,C -n ) (2.7)

Assuming that the scene is illuminated by one stationary, distant point light source and an ambient 

light, both invariant in time and space, the description of incident irradiance can be represented as:

£(jV ,2.)=£,(;i)+£,(A ).m ax(0.Z ,’' . W). (2.8)

This is the shading model o f Phong used in early computer graphics. The model given by 

Equation (2.8) has been implemented in an object-based analysis-synthesis coder by Stauder 

[STAU-1995]. In the 2-D image plane, he assume that the luminance i// at pixel x  and time t  is

proportional to the reflected radiance at the 3-D point X  corresponding to x  ; that is,

+ d,)=k- C{x)=k ■ r(% ). E(n )  (2.9)

where k  is a. constant, and N  denotes the normal direction corresponding t o % . Thus, the 

luminance intensity of a point moving from Xf̂  to (with corresponding surface normals 

and ) from time t to t + d^, changes according to:

+ (2.10)

The simplest and yet most widely used illumination model simply assumes that E(n ) is a 

constant. In this case, the luminance of a moving point does not change, and

+ = a ) (2 .1 1 )

This is referred to as the constant intensity assumption. This model is widely used for video 

processing applications, including the video coding standards, such as MPEG-2 and MPEG-4.

2.1.3 Object model

The object model describes assumption about real objects. For video coding, the object can be 

described by shape, motion and texture models [MUSM-1989]. The texture model describes the 

surface properties of an object. Commonly, the texture of an object is described by the colour 

parameters, which contain the luminance and chrominance reflectance. Since we usually assume

14



Chapter 2. Model-based and scalable video coding: Overview

constant intensity according to Equation (2.11), the colour parameter corresponds to the image 

signal . Commonly, different object models, such as 2D object model and 3D object model, 

use the same texture model, while employing different motion and shape models. In the following 

sections, different shape models and motion models will be intioduced.

2.1.3.1 Shape model

The shape of a 3D object is described by the 3D space that it occupies. Object shapes can be 

convex, or concave. They can also have holes. It is commonly assumed that an object is 

topologically connected; that is, that a path can be drawn from any point in the object to any other 

point without leaving the object. Commonly, the shape of object is described by its surface. Often, 

a mesh of polygons, referred to as a wireframe, is used.

For a mesh of triangles, it is put up by vertices referred to as conti ol points. In addition to these 

control points, a list is needed to define which control points define the triangles. The control 

points of a wireframe are located on the object surface. The number and location of control points 

are determined by the object shape, as well as the accuracy with which the wireframe model is to 

describe the object shape. If  control points cannot be moved independently, the object is rigid and 

cannot change its shape. Otherwise, the object is flexible and can change its shape.

When a real object is projected onto the image plane, the shape of a 3D object is projected as a 2D 

object contour. Similar to 3D object shapes, the number and location of control points along the 

object contour determine the accuracy o f the projected shape. However, a 2D shape cannot be 

used to decide whether the 3D object is flexible or rigid. When a rigid object is moving, its 2D 

shape may change.

2.1.3.2 3-D Motion model

The motion of a rigid object can be described in terms of a translation vector T = and

a rotation matrix [jR]. The translation vector T  describe a displacement of a point from X  to X ' 

by Ty, Tj, in the directions of the coordinate axes X , T , Z , respectively;

T  = % + r .  (2 .1 2 )
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If an object rotates around the origin of the 3-D space, we describe the motion of its points with 

the rotation matrix [r ];

where ] , [Ry\, and ] ^re the rotation matrices around the axes X , Y , Z .

(2.13)

These individual rotation matrices are: 

" 1 0  0

and

0  cos^^ -  sin 
0  sin 0^ cos 0^

cos 6y 0  -  sin

0 1 0
sin 0  cos

cos 0^ -  sin 9^ 0

sin^ , cos^g 0

0 0 1

(2.14)

(2.15)

(2.16)

If we consider both translation and rotation, the motion of a point on the object surface from X  

to X '  can be expressed as:

x ' = [ £ ] x + r (2.17)

Equation (2.17) rotates the point X  on the object surface around the centre of the world 

coordinate system. In the case that the object rotates around its own centre only, the object motion 

can be represented as;

x ' = [ £ ] ( j r - c ) + r + c

where C = (C,, C, ) is the coordinate o f object centre.

(2.18)

From the above analysis, we can find that the object motion can be described by the parameters 

A = (Tj., Ty, 7^,8 ;,,8 ^ ,8 2 ). For a rigid object, the shape does not change when it is moved with

parameter set A .
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Not all real objects are rigid. One way to describe a flexible object is by decomposing it into two 

or more rigid components. Each object has its own set of motion parameters A  according to 

Equation (2.18).

Alternatively, flexible objects can be described by superposing small local motion onto the rigid 

motion parameters. For example, if we have a sailing ship with a flag, the ship motion can be 

described using a set of rigid parameters and local motion model is used to describe the waving of 

its flag in the wind. Since flexible objects change their shape due to local motion, it is not obvious 

whether this change should be described by shape or motion parameters.

2.1.3.3 2-D motion model

Object or camera motion in 3-D leads to 2-D motion. The 2-D motion model depends not only on 

the 3-D motion model, but also on the illumination and camera models. The most important 2-D 

motion model is projective mapping, which is often approximated by affine or bilinear mapping.

As we know, the 3-D positions of any object point before and after a rigid motion are related by

ri ' x '
Y' - 6̂ Y + Ty
Z ' /7 8̂ '9 . z 7z

(2.19)

Substituting Equation (2.2) into Equation (2.12), the relation between coordinates before and after 

the motion can be described as:

(r?x + r^y + rgF)- Z + T^F

y = F
(r^x + rsy + r^F)-Z + TyF 

+ Tgy + rgF) • Z + T^F

(2.20)

When there is no translational motion in the Z  direction, or when the imaged object has a planar 

surface, it is easy to show that Equation (2.20) can be simplified into the following eight- 

parameter projective mapping:
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l  + CjX + Cjy

y ---------------------
l + C|X + C2y

(2 .21)

The projective mapping is an important relation in the study of motion between two video frames, 

or equivalently the registration of two video frames. It models exactly the relation between images 

of the same object after camera or object motion, if  either of the following is tme:

(1) The object has a planar surface;

(2) Neither the object nor the camera undergoes translation along the Z -axis.

In practice, in order to circumvent the problem caused by its rational form, the projective mapping 

is approximated by polynomial mapping, such as affine mapping, bilinear mapping, biquadratic 

mapping and pseudo-perspective mapping. They are listed in the Equation (2.22) -  (2.25), 

respectively.

X  - X

y - T

y'-y.

x ' - x

y - y .

x ' - x

y ~ y

Uq + üiX + «2T
bQ +biX + b2y

«0 +a^x + a2y-̂ -a-̂ xy 
+ 6 2 T + b2,xy

ÜQ + a-̂ x + Û2T +

6() + b̂ x + 7>2y  + 63%̂  + + b^xy

ÜQ + a^x + Ü2y + a-^xy + b^x" 

ho + + b2y + b^xy +

(2.22)

(2.23)

(2.24)

(2.25)

2.1.4 Scene model

The scene model describes how the moving object and the camera of a 3-D scene are positioned 

with respect to each other. There are three kinds of scene model, which are named as 2-D scene 

model, layered 2-D scene model (or named as 2.5-D scene model), and 3-D scene model, with 

different level of complexity [WANG-2002].

The 3-D scene model allows description of object motion and occlusion, as well as cast shadows. 

It can realistically describe the real world. If the objects are in motion, we distinguish between
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four image areas: static background, moving object, uncovered background region, and newly 

covered background (or occluded regions).

Figure 2.3 shows two image frames with a moving object. Comparing frames k  and k + l ,  we 

can distinguish the changed and unchanged regions. The unchanged regions show the static 

background in both images. The moving object is part of the changed regions in image k  and 

k + 1. In frame /c, the change region is defined as the area of the moving object, and the 

background to be covered in frame A: +1 due to the object motion. In frame /: +1, the changed 

region is defined as the area of the moving object and the uncovered background that was not 

visible in frame k .

U nchanged  region

Background to 
be  covered

C h an g ed  regionT
Moving
object

F ram e k

F ram e k+1

Moving
object

U ncovered
Background

Figure 2.3 -  The separation of changed areas into moving objects, uncovered background, and

background to be covered [HOTT-1988].

3-D scene model can be simplified as a scene with layered 2-D objects, which is called as 2.5-D 

scene model. In this model, the camera model uses orthographic projection instead of perspective 

projection. Therefore, depth has no effect on the image of this scene. This model does not allow 

the description of effects due to 3-D motion. MPEG-4 standard supports layering of video objects 

and the layered 2-D scene model.

The simplest 2-D scene model is used in the video coding standards, such as H. 263, MPEG-2, 

and H. 264. It assumes that all objects are flat and lay on the same image plane and 2-D objects 

are limited to motion in a 2-D plane. This scene model is useful for video processing.
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2.2 Model-based video coding

In past decades, much research has been conducted into the use of object models in video coding 

and many model-based video coding schemes have been proposed. Different from various 

conventional waveform coding methods, in which 2-D waveforms of image signals are efficiently 

compressed, model-based video coding represents image signals using structural object models 

which in some sense take into account the 3-D properties of the scene. Based on the applied 

object model in the published schemes, three different scenarios for model-based video coding 

can be classified: 3D model-based methods [DIEH-1991] [KOCH-1993] [AIZA-1989], 2D 

model-based methods [NAKAYA-1994] [GERKIN-1994] [WANG-1994], and hybrid 2D/3D 

model-assisted methods [EISERT-2000]. Various published papers, such as [MUSM-1989], 

[AJZA-1995], and [PEAR-95], give a detailed review of model-based video coding approaches.

2.2.1 3D model-based video coding

3D model-based coding is a rather specific approach to model-based coding which utilizes a 3-D 

model of a person’s face. In these approaches, 3-D structural models of scenes are adopted. There 

are two kinds of major approaches to 3D model-based schemes: Approach I makes use of surfaces 

of the object modelled by general geometric models such as planes or smooth surface [DIEH- 

1991] [HOTT-1989] [MUSM-1989]; Approach II utilises a parameterised model of the object, 

such as parameterised facial models [AIZA-1989] [LI-1993].

In Approach I, information such as surface structure and motion information are estimated from 

image sequences and utilised in video coding. These approaches have been applied, together with 

motion compensation and interpolation, to improve the performance of the first-generation video. 

coding method, which includes predictive coding, transform coding, vector quantization, etc.

In Approach II, parameterised models are usually given in advance. In these schemes, video 

sequences are analyzed to estimate the parameters of these models. These parameters are 

compressed and are sent to the decoder, which uses these parameters to render the video 

sequence. One of the problems of this approach is that automatic modeling and analysis is not an 

easy task. Up to now, most of the contributions to 3-D model-based coding have focused on head- 

shoulder sequences and the parameterized face model. In these methods, automatic facial motion 

analysis has been done under restricted conditions (e.g. the initial position of the face is known). 

The extracted facial animation parameters (FAP’s) are compressed. Choi et al [CHOI-1994] and
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Li et al [LI-1993] reported a direct estimation of head and facial movements, which do not require 

feature point correspondence. G. Bozdagi, et al [BOZD-1994] described a novel formulation 

where 3-D global and local motion estimation and the adaptation of a generic wireframe model to 

a particular speaker are considered simultaneously within an optical flow based framework 

including the photometric effects of the motion. For all of these methods, heavy computational 

complexity is required.

Compared with 2D model-based coding approaches, 3D model based video coding schemes have 

several disadvantages:

• Obtaining detailed object models from a general scene is extremely difficult;

• The adaptation of face models to a particular human face in the sequence is very 

complicated and time-consuming;

• The analysis process in the video encoder is too complex to get the data required to 

synthesize the image in the decoder. This is not suitable for handheld mobile devices;

• 3-D object model is very sensitive to channel errors during the transmission.

2.2.2 2D model-based video coding

Currently, 3-D model-based video coding is too rigidly object-specific because the extraction of 

3-D structure from single objects in an unrestricted environment and the efficient modelling of 

their surfaces is an extremely difficult task. Modelling objects is the most important issue in 

model-based video coding as the complexity of analysis and synthesis depends on the adopted 

model. Up to now, most of the contributions to 3-D model-based video coding have focused on 

human facial images, and the parameterised facial models are utilised in advance.

In order to cope with the generality problem of 3D model-based video coding approaches, many 

2D model-based video coding methods have been introduced [HOTT-1990] [NAKAYA-1994] 

[SALE-1995] [ERYU-1995] [CZEREPINSKI-1997]. The 2-D model based coding schemes are 

rather general approaches. These coding methods exploit visibly important 2-D features, such as 

edges, contours and regions. In the case of video sequences, moving regions that are detected as 

changing areas between two successive frames are modelled and coded as arbitrarily shaped 2-D 

objects [HOTT-1990].
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In 2D model-based video coding, both rigid and flexible regions are used for modelling 2-D 

moving areas. The motion models are not limited to the simple translation model. They exploit 

affine transform and bilinear transform in order to better approximate the fields of a 3-D moving 

rigid object and linear transformation such as rotation and zooming. Deformable triangular 

segmentation of the image and affine transform based motion model are also employed 

[NAKAYA-1994]. The 2 -D deformable triangle-based method divides images into triangle blocks 

and makes use of an affine motion model. The affine motion parameters of each triangle are 

uniquely determined by the displacement of its grid points so that no additional information needs 

to be transmitted except displacement vector of triangle nodes. Motion compensation is performed 

as follows:

1. Covering the current frame by triangular patches;

The advantages o f the triangle-based motion compensation are: (1) it can deal with linear 

deformation such as zooming and rotation; (2 ) it well approximates the motion field of a 

3-D moving object; (3) it effectively avoids block artifacts. However, the triangle-based 

warping motion compensation techniques may suffer fi'om strong inhomogeneous motion, 

e.g. very fast moving objects, leading to “warping artefact” as reported in [OHM-1996]. 

Overlapped block motion compensation (OBMC) can be applied to deal with such errors 

[HEIS-2001].

2. Estimating the motion of the grid points;

3. Synthesizing the prediction image by mapping (warping) the texture of the previous 

frame onto the corresponding patches of the current frame.

A. M. Tekalp, et.al [TEKALP-1997] compared 2-D and 3-D model-based video coding methods 

in terms of their capabilities and performance (peak signal-to-noise ratio and visual image quality) 

for very low bit-rate video coding. The results show that 2-D model-based video coding with 

affine/perspective transformation and ti'iangular mesh models can simulate almost all capabilities 

of 3-D model-based approaches using wireframe models at a fraction of the computational cost.

2.2.3 Hybrid model-assisted video coding

The combination of traditional hybrid video coding methods with model-based coding has been 

proposed by Chowdhury et al. in 1994 [CHOWD-1994], which is called as hybrid model-assisted
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video coding. A switched model-based coder is introduced that decides between encoded output 

frames from an H.261 coder and a 3D model-based coder. The coding mode decision is done for a 

complete frame and therefore the information fr om the 3D model cannot be exploited if only parts 

of the frame cannot be described by the model-based coder. An extension to the switched model- 

based coder is the layered coder proposed by Musmatm in 1995 [MUSM-1995], The layered 

coder chooses the output from up to five different coders, and the coding mode decision is done 

ffamewise or objectwise.

original
frame residual

motion
vectors

decoder FAPs

I DCT

reconst.
frame

model
frame

DCT

model-
based
coder

model-
based

decoder

multi-
frame
motion

compen­
sation

Figure 2.4 — Structure of the hybrid Model-aided video coder [EISERT-2000].

In 2000, Eisert P, et al. [EISERT-2000] proposed a hybrid model-aided video coding, which is an 

extension of an H.263 video codec that incorporation information from a model-based coder in a 

novel way. Instead of exclusively predicting the current frame of the video sequence from the 

previous decoded frame, motion compensated prediction using the synthesized output frame of 

the model-based coder is also considered. In this approach, both traditional waveform coding and 

3D model-based coding are combined such that the generality of waveform coding and the 

efficiency of 3D model-based coding are available where needed. The model-based coder uses a 

parameterised 3D head model, which consists of shape, texture and the description of facial 

expressions. Motion and deformation of the 3D head model constitute facial expressions which 

are represented by facial animation parameters (FAP’s) based on the MPEG-4 standard [MPEG-
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1999], For synthesis of facial expression, the transmitted FAP’s are used to deform the 3-D head 

model. Since only a few parameters are encoded and transmitted at very low bit rates, typically 

less than 1 kbits/s, are obtained if  the ■ 3-D models can describe the current video frame. 

Experimental results proved that the model-assisted video coding scheme could achieve bit rates 

as low as 5 kbps with good video coding performance.

2.3 Scalable video coding

The aim of model-based video coding is to optimise the coding efficiencies for a fixed bit rate. 

This presents a difficulty when multiple users try to access the same video through different 

communication links. If the video stream is scalable, the user with high-bandwidth connections 

can download the entire bit stream to view the full-quality video, while the users with low- 

bandwidth will download part of the bitstream and see the low-quality presentation. Scalability 

r^ers to the capability o f recovering physically meaningful image or video information by 

decoding only partially compressed bit streams.

A scalable stream can also offer adaptivity to varying channel error characteristics, and computing 

power at the receiving terminal. For wireless communications, scalability allows the adjustment 

of the source rate and the application of unequal error protection in response to channel error 

conditions. For internet transmission, scalability enables variable-bit-rate transmission, selective 

bit discarding, and the adjustment of the source rate to correspond to different modem rates, and 

diverse device capability. As we move to the convergence of wireless, Internet, and multimedia, 

scalability becomes increasingly important for rich media access from anywhere, by anyone, at 

any time, with any device and in any form. Due to its importance, scalable video coding is being 

intensively investigated currently [MPEG-2003]. However, the coding efficiency of scalable 

video coding is still not superior to the nonscalable video coding techniques. Therefore, the design 

goal in scalable video coding is to minimise the reduction in coding efficiency while realising the 

requirement for scalability.

The scalabilities include quality or SNR scalability, spatial scalability, temporal scalability, Fine- 

Granularity scalability and object-based scalability, which will be discussed in the following 

subsections.
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2.3.1 Quality scalability

Quality scalability is defined as the representation of a video sequence with varying accuracies in 

the colour patterns. This is typically accomplished by quantising the pixel values with 

increasingly fine quantisation stepsize. This type of scalability is also referred to as SNR 

scalability.

During encoding for quality scalability, the first layer is obtained by applying a coarse quantiser 

to the original image (or in transformed domain). The second layer contains the quantized 

difference between the original image and that reconstructed from the first layer, using a quantiser 

that is finer than that used to produce the first layer. Similarly, each o f the subsequent layers 

contains the quantised difference between the original image and the one reconstructed from the 

previous layer, using an increasingly finer quantiser.

Base-layer 
compressed 
bit stream

Raw
video

Enhance d-layer
vue

bit stream

VUGDCT

(a)

Base-layer 
compressed ■ 
bitstream

/  Enhanc e delayer 
compressed —% 
bit stream

VLD IQ

VLD

IDCT Base-layer 
decoded video

Enhance delayer ' 
decoded video

(b)

Figure 2.5 -  A two-level quality-scalable codec: (a) encoder, (b) decoder

An encoder and decoder with two-level quality scalability are depicted in Figure 2.5. In the 

enhanced level, a smaller quantisation parameter is used to achieve better quality than the base 

level.

2.3.2 Spatial and temporal scalability

Spatial scalability is defined as the representation of the same video in varying spatial resolution. 

To produce such a layered bit stream with spatial scalability, a multiresolution decomposition of
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the original image is first obtained. The lowest-resolution image is coded directly to produce the 

first layer. To produce the second layer, the decoded image from the first layer is first interpolated 

to the second-lowest resolution and the difference between the original and the interpolated image 

at that resolution is coded. The bit stream for each of the following resolutions is produced in the 

same way: first an estimated image at that resolution is formed, based on the previous layers, then 

the difference between the estimated and the original image at that resolution is coded.

Figure 2.6 shows a block diagram of a two-layer spatially scalable codec. Since the enhanced 

layer use a smaller quantization parameter, it achieves higher quality than the base layer.
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Figure 2.6 -  A two-level spatial/temporal scalable codec (a) encoder, (b) decoder

Temporal scalability is defined as the representation of the same video in varying temporal 

resolution or frame rates. Temporal scalability enables different frame rates for different layers of 

the contents. Typically, temporally scalable video is encoded in a way that makes use of 

temporally upsampled pictures from a lower layer as a prediction in a higher layer. The codec to 

achieve temporal scalability has a similar structure as that to achieve spatial scalability, as shown 

in Figure 2.6. The only difference is that the spatially scalable codec uses spatial down-sampling 

and spatial up-sampling, whereas the temporally scalable codec use temporal down-sampling and 

temporal up-sampling.
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2.3.3 Fine-Granularity scalability

Fine-granularity scalability (FGS) refers to a coding method by which the rates as well as the 

quality increase with much smaller steps. In the limiting case, in which a bit stream can provide 

continuously improved video quality with every additional bit, the underlying coding method is 

called embedded coding. It is obvious that FGS and embedded coding can adapt to bandwidth 

variations in real networks more effectively than other scalable methods.

In practice, the requirement that the bit stream has fine granularity is often relaxed. A base layer 

may be first produced to provide a low but guaranteed level of quality, and then an enhancement 

layer may be generated to provide improvements in fine granularity. This is the method employed 

in the FGS model of MPEG-4 [LI-2001] [SCHA-2001]. In this case, the conventional block-based 

hybrid coding method is employed to produce a base-layer stream at a given frame rate, using a 

relatively large Quantisation Parameter (QP). Then, for every coded frame, the differences 

between the original DCT coefficient and the quantised coefficients in the base layer are coded in 

to a fine-granularity stream. This is accomplished by quantising the refinement coefficients using 

a very small QP and then representing the quantised indices through successive bit plane 

encoding. Figure 2.7 illustrates the transmission of portions of the enhancement-layer stream for 

the support of joint quality-temporal scalability [SCHA-2000a].

I Enhancement layer

I Base layer

Poftion of enhancement 
layer transmitted

Remaining enhancement 
layer

Figure 2.7 -  Illustration of the transmission of the enhancement-layer stream [SCHA-2000a]

The limitation with FGS scheme is that the base layer must be delivered completely and without 

error. This may or may not be possible in practical networks. Another problem is that, when the 

base-layer bit rate is kept low (so as to increase the scalable range of the bit stream), the coding 

efficiency of the FGS method will be significantly reduced compared to a nonscalable coder. One
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approach to improving the coding efficiency o f the FGS method is to periodically use an 

intermediate enhancement layer (reconstructed from some but not all bit plane) as a reference for 

motion-compensated prediction [WU-2001]. Furthermore, it is difficult to use block-based 

transforms to realize fully embedded coding. Much research has been conducted for wavelet- 

based coding to achieve this (see section 2.3.5).

2.3.4 Object-based scalability

Object-based scalability is also important for the video format to facilitate content manipulation. 

In object-based temporal scalability (GTS), the frame rate of a selected object is enhanced such 

that it has a smoother motion than the remaining area.

10 12
Frame number

Enhancement
layerVOLl

Frame num ber

VOLO
Base layer

Figure 2.8 -  GTS enhancement structure [MPEG4-2001]

Figure 2.8 shows an example of GTS, which uses bidirectional prediction to form bidirectional 

VGPs (B-VGPs) in the enhancement layer. In this figure, VGLO (VideoGbj ectLayer 0) is an 

entire frame with both an object and a background, whereas VGLl represents the particular object 

in VGLO. VGLO is encoded with a low frame rate, and VGLl is coded to achieve a higher frame 

rate than VGLO. In this example, frames 2 and 4 in VGLl are predicted from frames 0 and 6  in 

VGLO. Two additional pieces of shape data, a forward shape and a backward shape, are encoded 

to perform the background composition.

2.3.5 Scalability with wavelet-based coding

The discrete wavelet transform (DWT) has emerged as a powerful tool in image and video 

compression, due to its flexibility in representing non-stationary image signals and its ability to
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adapt to human vision characteristics. Wavelet-based image coding techniques have been 

included in some image and video coding standards, such as JPEG2000 [TAUB-2000] and 

MPEG-4 [MPEG4-2001].

Like the DCT-based approach, wavelet-transform-based coding for images consists o f three steps: 

(1) wavelet transform; (2) quantisation and (3) entropy coding. Wavelet coefficients after wavelet 

transform are typically organised into a hierarchical data structure, so that the bit allocation and 

data compaction can be employed more efficiently. Quantisation allows the data rate to be 

reduced at the expense of some distortions. Entropy coding encodes the quantised coefficient into 

a set o f compact binary bit streams. When applying wavelets to video coding, mechanisms to 

reduce temporal redundancy are needed. Motion compensation in both spatial and wavelet 

domains, 3-D wavelets, and motion compensated 3-D wavelet video coding algorithms have been 

proposed [WIEN-2004] [WU-2004]. Especially, motion compensated embedded zero block 

coding (MC-EZBC), which was recently proposed by Chen et al [CHEN-2002], has become 

prominent because o f the excellent performance. In MC-EZBC, each pair o f frames is first motion 

estimated with hierarchical block structure, and then decomposed into a high-band frame and a 

low-band frame by the motion-aligned lift-based Haar filter. MC-EZBC efficiently solves the 

problems in the firactional-pel motion aligned temporal transform due to the use o f lifr-based 

wavelet transform [LUO-2001]. Promising experimental results have demonstrated that the 3D 

wavelet-coding scheme can be competitive with the state-of-the-art H.264 video standard on 

coding efficiency, at the expense of large delay. As the temporal filtering is conducted with one 

GOP, this restricts its applications, such as real-time video streaming.

However, there are still many problems to be solved before this coding technique can be 

described as mature. First, the compression efficiency o f the 3D wavelet coder is still not 

satisfactory for video sequences with complex motion patterns. Next, 3D wavelet coder can cause 

large time delay due to the use o f temporal filtering across one Group of Pictures (GOP). This 

restricts some real-time applications, such as real-time streaming and video conferencing. 

Furthermore, as more motion vectors are generated during motion compensation (commonly 

double), they use up a large portion of bits for low-bit rate application. This requires more 

research to achieve scalable MV coding. Therefore, further research is still needed to achieve all 

kinds o f scalabilities in one codec.

2.4 Conclusions

This chapter gives an overview of video modelling and main techniques of model-based video 

coding. It also reviews the main scalable video coding techniques.
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This chapter begins with a description o f video model techniques, such as camera model, 

illumination model, object model and scene model. This is considered as the theoretical 

background of the proposed video coding scheme. All of the video coding schemes should be 

based on a special video model. For example, for video coding techniques adopted in MPEG-2 

and MPEG-4, the object models assume object with 2-D motion and the illumination models 

assume ambient lighting and diffuse reflecting surfaces. These coding standards use 2-D scene 

model that assumes 2-D objects moving parallel to the imaging plane o f the camera. Therefore, 

the selected video modelling techniques decide the properties of the video coding schemes.

Next, model-based video coding approaches are reviewed, which includes 3D model-based video 

coding, 2D model-based video coding, and hybrid model-assisted video coding techniques. Both 

2D and 3D model-based coding have their advantages and disadvantages. For 3D model-based 

video coding, current contributions mainly focus on some special video objects only, such as the 

human face. In hybrid model-assisted video coding scheme, both traditional waveform coding and 

3D model-based coding are combined such that the generality of waveform coding and the 

efficiency of 3D model-based coding are available where needed.

Furthermore, this chapter also gives an overview of scalable video coding. Scalable video coding 

techniques are very important for rich media access for different users. Four kinds of scalabilities 

are discussed in detail. Wavelet-based coding techniques can easily be made to produce an 

embedded stream because the wavelet transform provides a multiscale representation o f the 

signal. However, more research is needed to reach the coding performance o f state-of-the-art non- 

scalable video coding technique at all bit rates.
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Chapter 3

Video Analysis and Segmentation

3.1 Introduction

Interactivity with multimedia content is becom ing a reality: the user is no longer satisfied being a 

passive spectator, and wants more of an active role. With the publication of the MPEG-4 

[MPEG4-2001] and MPEG-7 standard [MPEG7-2002], the MPEG comm ittee has made a 

significant contribution towards the development of a new generation of interactive multimedia 

services. MPEG-4 standard allows the independently encoding of audiovisual objects and MPEG- 

7 gives the content-based description of audiovisual materials. Furthermore, advanced types of 

interaction are often based on the understanding of a video scene as a composition of video 

objects, to which it is possible to associate specific information as well as interactive ‘hooks’ to 

deploy the desired application behaviour. To enable such type of interactive services, a 

representation of the scene semantics that is no longer limited to the frame concept is required. 

The ability to manipulate such entities in video is a shift in the paradigm from pixel-based to 

content-based management of visual information.

1

(a) (b) (c)

Figure 3.1 -  Example of the composition of a scene: (a) synthetic object; (b) real object; and (c)

composed video scene from (a) and (b)

In the old paradigm, a video sequence is characterised by a set of frames. In the new paradigm, 

the video sequence is composed of a set of meaningful entities. A wide variety of applications
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benefit from this shift, which range from video coding to video surveillance, and from virtual 

reality to video editing -  see example in Figure 3.1.

Before introducing the extraction of meaningful entities, the concepts of object and region needed 

to be introduced. These two concepts provide the additional organisation units to allow 

semantically structured representations -  see example in Figure 3.2.

(a) (b) (c)

(d) (e) (f)

Figure 3.2 -  Example of semantically structured representations of a video frame, (a) Original 

frame; (b) A rectangular set of pixels extracted from (a); (c) A set of pixels showing the relevant 

video object; (d) A segmentation partition of video object (indicated by yellow colour); (e) The 

regions of a video object; and (f) The selected video object using the obtained object mask.

In the context of this thesis, a region is defined as a set of neighbouring pixels that, at a given 

time instant, are similar to each other according to some homogeneity criteria that can be 

objectively measured, and which can be tracked through time during its temporal life span. An 

object is associated with a higher abstract level carrying some semantic value in a given 

application context, and corresponds to a region or a set of regions. The set of objects and/or 

regions that completely cover an image at a given time instant, without overlapping, is the 

temporal instantiation of a segmentation partition. Taking a segmentation partition and focusing 

on a single object by replacing all other labels by a common value allows the segmentation mask
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of that object to be obtained. Usually, segmentation denotes the operation aimed at partitioning 

an image or a video sequence into regions extracted according to a given criterion. In the case of 

video sequences, this partitioning should also achieve the temporal coherence of the resulting 

sequence of object masks representing the video object.

The extraction of the meaningful entities is one o f the important steps for the success of scalable 

2D model-based video coding scheme. This chapter is mainly devoted to the technique of 

extracting meaningful entities. To that purpose, the main video segmentation techniques are first 

reviewed and classified in section 3.2. hi particular, spatial, temporal and combined spatio- 

temporal segmentation techniques are discussed. The role of user interaction for segmentation is 

also examined. After reviewing the published video segmentation algorithms, a complexity- 

scalable object contour-tracking algorithm is proposed in section 3.3. In the proposed algorithm, 

semantic objects are first extracted, and object contour is used as the description of a 2D video 

object. Once the object contour in the first firame is achieved through user interaction and/or auto­

segmentation scheme, the contour-tracking algorithm can be applied to segment the whole video 

sequence. The efficiency o f the proposed algorithm is evaluated using many experiments, as 

shown in section 3.4. Section 3.5 gives the conclusions of this Chapter.

3.2 Video segmentation techniques: A review

Segmentation is one of the most important objectives of a video analysis system targeting object- 

based coding and description. Unfortunately, a complete theory o f video segmentation is not 

available. Video segmentation techniques are ad hoc in their genesis and differ in the way they 

trade-off one desired property against another.

According to Haralick and Shapiro, image segmentation can be defined as “a process which 

typically partitions the spatial domain o f  an image into mutually exclusive subsets, called regions, 

each o f which is uniform and homogeneous with respect to some property such as tone, hue, 

contrast or texture and whose property value differs in some significant way from the property 

value o f  each neighbouring region'' [HARA-1994].

The extension of this definition to object-based video analysis requires taking into account the 

temporal dimension. The temporal coherence o f the segmentation should be guaranteed. Temporal 

analysis may be performed by estimating the motion between consecutive frames, thus providing 

valuable information to merge regions that are not spatially homogeneous but do belong to the 

same object. Also the tracking o f partitions is enabled by the temporal information, ensuring the 

coherent evolution of the segmented objects with time.
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More powerful and complex segmentation criteria may be introduced by using some priori 

knowledge or by accepting user guidance, which depends on the semantics of the application. 

This type o f information is o f major importance in identifying objects semantically relevant to the 

application. Other generic criteria, such as size, position, or depth order, for instance, may also 

provide useful information for segmentation purposes.

The remaining part of this section presents an overview of available video segmentation 

techniques. These techniques can be classified into two groups: automatic video segmentation and 

semi-automatic video segmentation. The discussion of this section is mostly focused on automatic 

techniques, as these are tiie most commonly presented in the literature. Moreover, since the 

interaction of the user should always be limited to the minimum, automatic segmentation 

techniques are the aims of all segmentation solutions, even those including user guidance.

Automatic video segmentation techniques are typically grouped into three major categories, 

depending on the properties looked for to build the image partitions:

• Spatial segmentation -  the target regions are homogeneous in terms of their spatial 

features. Using the luminance and chrominance information, measures such as average 

and contrast, are computed to find homogeneous regions. These techniques are commonly 

unable to deal with the temporal homogeneity aspects of the content. '

•  Temporal segmentation -  the target regions are homogeneous in the temporal (motion) 

dimension. These techniques usually operate on estimated motion vector fields, and are 

able to produce temporal coherent partitions, but they cannot identify static objects (or 

parts of objects).

• Combined spatio-temporal segmentation -  the target regions are homogeneous both in the 

spatial and temporal motion dimensions. These techniques allow overcoming many 

limitations of the spatial and temporal segmentation techniques.

Depending on the specific techniques and related principles used for the segmentation, a further 

level of classification for the automatic video segmentation techniques is proposed:

• Spatial segmentation -  various types o f spatial segmentation techniques can be 

considered, depending on the application addressed. The various techniques may also
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have different degrees of complexity. The main classes of spatial segmentation techniques 
are:

o Thresholding — these are simple segmentation techniques that identify regions mainly 

based on the analysis of image histograms [HARA-1992].

o Texture-based — these techniques are based on the detection of regions with 

homogeneous textural characteristics. The type o f techniques employed is usually 

effective in detecting highly textured regions [REDN-1984] [OCON-1997] [HILL- 

2003] [CALLAGHAN-2005].

o Edge-based -  these techniques first detect the edges present in the image, and then 

process the regions to build an image partition [BALL-1982] [JAIN-1989] [PRAT- 
1991].

o Regions-based — these techniques can be seen as the dual of the edge-based 

techniques, as they directly detect homogeneous regions in the image, which are 

separated by a set o f edges. The tools employed differ from those used in texture- 

based techniques, where the separation between regions is not mainly imposed by the 

presence o f edges. Often region merging and splitting techniques are used [HORO- 

1976] [MEYE-1990] [HARA-1992] [CORT-1995].

Temporal segmentation -  mainly two types o f segmentation techniques can be 

considered, depending on the application targets:

o Change detection -  these techniques target the identification o f the areas that change 

(or not) between successive images, and are not able to identify objects with different 

motion characteristics [HOTT-1988] [MUSM-1989] [AACH-1993] [MECH-1998].

o Motion segmentation -  these techniques are based on motion homogeneity criteria, 

such as the velocity field values; in this case, multiple moving objects can be 

identified even if  they have similar texture [BOUT-1993] [WU-1993] [WANG- 

1994b] [WEIS-1997].

Combined spatio-temporal segmentation -  depending on the way the spatial and temporal 

information is processed, various types o f segmentation techniques are identified:
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o Temporal after spatial -  a spatial segmentation can be improved by considering also 

temporal information. For instance, several regions can be merged into the same 

object if they share common motion characteristics [CHOI-1997].

o Spatial after temporal -  these techniques refine the temporal segmentation results 

using spatial information. For instance, region contours can be corrected, or 

temporally uniform regions can be split according to their spatial characteristics 

[MECH-1998] [KIM-1999].

o Temporal and spatial together -  these techniques perform the segmentation by 

simultaneously considering temporal and spatial information [SALE-1994] [MOSC- 

1998].

The various video segmentation algorithms identified above are discussed in the following 

subsections.

3.2.1 Spatial segmentation

Spatial segmentation techniques consider each image by itself even if  it belongs to a video 

sequence. A segmentation partition is produced based only on the spatial features of each image 

and, in particular, motion information is not taken into account. No information firom previous 

frames and subsequent frames, that is, no motion information is used during segmentation. As a 

consequence, spatial segmentation cannot generate time-coherent partitions.

3.2.1.1 Threshold segmentation

Threshold segmentation techniques are mainly based on the selection o f an adequate (set of) 

separation level(s), i.e., threshold(s), in order to identify areas with different properties in the 

histogram of some image component, and split the image accordingly. Pixels are allocated to 

regions depending on the range of values in which they lie, considering the values for the 

luminance component. This is a very simple approach to the segmentation problem, which can 

generate accurate results for simple image.

Given an input image / ,  a simple two-level segmentation algorithm consists in generating an 

output image O by comparing each luminance pixel with a pre-defined threshold T :
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r  % j ) I t  (3.1)

This technique, when applied to simple images with a carefully selected threshold, can result in 

the effective separation o f the target objects from a background with a different brightness level.

The selection of the threshold values is not an easy task in order to obtain good segmentation

results. It can be done manually or automatically based on global and/or local characteristics of

the image. A number o f methods for choosing image segmentation thresholds can be found in the

literature [HARA-92]. The most popular method is by analyzing the image histogram peaks and 
valleys.

Segmentation by clustering can also be classified into the Thresholding category, although the 

threshold doesn t need to be calculated. An image is represented in terms of clusters of pixels that 

belong together. The specific criterion to be used depends on the application. Pixels may cluster 

together because they have the same colour; they are nearby; and so on. Simple clustering 

methods, K  -means clustering methods and Graph-theoretic clustering [SHI-2000] [BOYKOV- 

2001] can be used in this segmentation technique. Based on the properties of the clustering 

algorithm, the segmentation by clustering can be considered as a general form of threshold 
segmentation algorithm.

The main advantage o f threshold segmentation techniques are their low computational cost, and 

their effectiveness in segmenting objects that are clearly distinct from each other in some 

component dimension. The main drawbacks o f thresholding techniques are that a large number of 

(small) regions are generated for textured images, and in some cases, important local spatial 

relationships are ignored within the image.

3.2.1.2 Texture-based segmentation

Texture-based segmentation techniques have the objective of building a partition in which each 

region is differently but uniformly textured. Texture is not only related to the way surfaces reflect 

light, expressed by the luminance and chrominance values, but also to characteristics such as die 

spatial distribution o f tones (or colour) along the image — examples o f textures are shown in 
Figure 3.3.

Textuie-based segmentation techniques generally use pattern recognition tools for textural feature 

extraction and classification. These segmentation techniques can be based on optimization or
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probabilistic models, such as Markov random fields and Bayesian estimation. Other techniques 

consider statistical models for regions, built by means of some initialization process and rely on 

methods like the expectation-maximization algorithm to cluster pixels according to the region 

models [REDN-1984] [OCON-1997].

The main advantage of texture-based segmentation techniques is their ability to detect 

homogeneous although highly textured regions. This is not possible to be achieved using other 

segmentation techniques that do not understand the notion of texture and tend to create over­

segmented partitions. However, these techniques usually have a high computational cost and only 

use spatial information.

(a) (b)

Figure 3.3 -  (a) Example image composed by 16 different texture samples, and (b) the 

corresponding segmentation partition.

3.2.1.3 Edge-based segmentation

Edge-based segmentation relies on boundary or edge detection techniques. These techniques try to 

find discontinuities in some properties of the pixels, such as grey level, colour, or some local 

measure, to identify the boundaries between regions. Edge-based segmentation techniques usually 

perform several major steps:

• Edge detection -  this step is typically performed by means of edge detection operators. 

The outcome of these operators indicates the likelihood of each pixel belonging to an 

edge, and does not directly correspond to a partition of the image, since multiple edge 

candidatures may be found close to each other and the resulting edges are usually not 

connected.
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•  Edge selection -  this step takes the output o f the edge detection step and selects the most 

relevant edge segments. The detected edges are processed and the corresponding pixels 

are classified as edge or non-edge. A cleaner and sharper edge image results from this 

procedure. Edge selection can be achieved by applying Thresholding and/or edge 

relaxation techniques [BALL-1982] [JAIN-1989] [SONK-1993].

• Region boundary identification -  this step takes the selected edges and combines them 

into closed chains, which define the boundaries o f the regions in the image. After this 

step, pixels not separated by an edge are considered as belonging to the same regions. 

Several techniques have been proposed to achieve region boundary identification [BALL- 

1982] [JAIN-1989] [SONK-1993].

3.2.1.4 Region-based segmentation

The region-based segmentation techniques partition the image into regions according to some 

relevant spatial homogeneity criteria. In particular, the regions detected are separated by edge and 

in this sense, these techniques can be considered as a dual o f the edge-based techniques.

Several techniques can be used to perform region-based segmentation. Most o f these techniques 

can be classified into one o f the following categories:

(a) (b) (c)

Figure 3.4 -  Example o f split and merge segmentation: (a) result o f splitting step; (b) result after 

the merging step; and (c) result after eliminating the small-size region to control the number o f

regions.

• Region Split and merge -  this category consists o f both splitting and merging o f regions, 

based on their spatial homogeneity. It usually considers a pyramidal image representation, 

where regions are square shaped and correspond to one o f the pyramidal levels. The 

segmentation starts with an initial division o f the image into regions according to the 

possible pyramid levels. Regions that are not homogeneous are usually split into four sub-
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regions according to a quadtree division. The result is a quadtree structure where each leaf 

node represents a homogeneous region. Due to the quadtree representation usually 

employed, it is desirable to introduce further processing steps to allow the merging of 

adj acent homogeneous regions not belonging to the same branch of the segmentation tree. 

Otherwise, some artificial block boundaries may result. An example of the application of 

this technique is shown in Figure 3.4.

Region growing -  the algorithms in this category are similar to region merging algorithm, 

in the sense that neighbouring regions with similar properties are grouped together. The 

main difference is that the region-growing algorithm does not start with a complete image 

partition, as in the region merging case, but only with a set of seeds.

A popular technique for performing region growing is known as the watershed 

transform s [MEYE-1990]. This technique is based on the detection of some image 

minima, and the ‘catchment basins’ around them, followed by the execution of a 

‘flooding’ procedure to divide the image into regions. Watershed segmentation is often 

implemented using mathematical morphological tools. Due to its good segmentation 

property, watershed algorithm, together with other feature extraction methods, has been 

widely used image and video segmentation [CALLAGHAN-2005]. Detailed description 

and examples o f watershed segmentation can be found in [MEYE-1990] [VINC-1991] 

[BEUC-1993].

Often, the region-based segmentation algorithms are preceded by a pre-processing step, where an 

image simplification is performed using morphological filters. The goal of simplification is to 

reduce the amount of information to process, while maintaining the relevant boundary information 

in the image. It also helps to minimize the problem o f over-segmentation that often results fi'om 

region-based techniques.

The main advantages o f region-based segmentation are the effectiveness in identifying regions 

that are homogeneous according to the selected spatial features and accuracy in boundary 

location. The major drawbacks of these techniques are oversegmentation. One object patch is 

segmented into several small patches due to the noise or texture. Therefore, image filtering or 

region merging is required for these techniques.

3.2.2 Temporal segmentation

Temporal segmentation algorithms compute a segmentation partition by evaluating homogeneity 

in the temporal dimension. To achieve such segmentation, the first step is usually to estimate a
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motion vector field, from which a partition of the image into coherently moving regions can be 

estimated.

For motion estimation, a number of different techniques can be used. Most of them are based on 

the estimation of the apparent 2-D velocity field: the optical flow. However, the estimated optical 

flow does not always correspond to the true motion field due to:

• The aperture problem; the motion can be estimated uniquely only if the aperture 

contains at least two different gradient directions. As illustrated in Figure 3.5, to 

estimate the motion at JCj using aperture 1, it is impossible to determ ine whether the 

motion is upward or perpendicular to the edge, because there is only one spatial 

gradient direction in this aperture. One the other hand, the motion at %2 can be 

determ ined accurately, because the image has gradients in two different directions in 

aperture 2.

True motionAperture 2

Aperture 1

Figure 3.5 -  The aperture problem in motion estimation

• The corresponding problem; It is very hard to measure optical flow reliably at 

featureless pixels because they could hardly correspond to pretty matching everything.

• Image noise and the occlusions between the moving objects;

The two main classes of temporal segmentation techniques are change detection and motion 

segmentation, which are discussed in the following sub-sections.

3.2.2.1 Change detection segmentation

Change detection segmentation is the simplest video segmentation method using temporal 

information. It can separate the regions that are changing position between successive time 

instants from those that remain statistic, by comparing the previous with the current image -  see 

example in Figure 3.6.
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The elementary steps typically followed to achieve change detection segmentation are:

• Computing the difference between consecutive video frames -  the frame difference 

should be calculated after global motion compensation, to prevent camera motion from 

influencing the results.

• Thresholding the image difference -  in order to obtain a binary image, the image 

difference must be thresholded. The threshold used can be predetermined. It can also be 

dynam ically computed based on the camera noise variance.

• Post-processing the result -  change detection results can be improved by post-processing 

the output of the thresholding step. For instance, if changes between consecutive images 

are expected to be small, then parts of the moving objects may not be detected as having 

changes, resulting in the appearance of undesired holes in the segmentation mask. In this 

case, when a part of a previously moving object remains static for a small period of time, 

it can still be considered as part of the detected object by using a segmentation memory 

[MECH-1998]. Another post processing is to distinguish between the changed areas that 

correspond to the moving objects from those corresponding to uncovered static areas. 

The uncovered static areas are assigned to the detected changed area to improve the 

moving object segmentation [HOTT-1988] [MUSM-1989] [THOMA-19891.

(a) (b) (c)

Figure 3.6 -  Example of initial step of change detection segmentation, (a) and (b): Two video 

frames; (c); The difference of the luminance part between (a) and (b).

Typically, change detection segmentation techniques use the segmentation result for a given time 

instant as an initialization for the next time instant segmentation, thus perform ing a temporal 

tracking of the detected objects. The limitations of change detection algorithms include:

•  First, the motion of uniform objects is very difficult to detect. These areas would 

become part of the unchanged area, creating holes in the foreground object.
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•  Next, it cannot be used to segment the still images or objects.

• Furthermore, the global luminance change of background can cause incorrect change 

detection. Adaptive background models are being investigated to reduce the effects of 

global luminance change [STAUFFER-1999].

It is worth noting that the MPEG-4 standard includes in its Visual part an informative annex 

describing a video segmentation algorithm whose temporal analysis is performed with the change 

detection algorithms presented in [MECH-1998] -  see Annex F in part 2 of MPEG-4 standard 

[MPEG4-2001].

3.2.2.2 Motion-based segmentation

Motion segmentation goes further than simply detecting changing areas between consecutive 

images, allowing the distinction between differently moving objects. For the example in Figure 

3.7, change detection segmentation cannot separate the two video objects. Motion-based 

segmentation relies on methods that estimate the 2-D velocity field and try to identify regions 

with homogeneous motion characteristics.

(a) (b) (c)

Figure 3.7 -  Example of motion-based segmentation partition (c) corresponding to the two frames

(a) and (b).

Several techniques have been proposed to perform motion segmentation. The possible 

classification of these techniques is proposed below:

•  Clustering techniques -  these techniques try to find clusters of pixels whose estimated 

motion vectors have similar properties. Clustering can be based on parametric motion 

models [WANG-1994b], Hough transform [KRUS-1996], Expectation Maximization 

framework (EM) [BRADY-1996], Maximization of a posteriori probability (MAP) 

[PARAS-2001], and Gaussian mixture models (GMM) [CHAL-1995].
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• Hierarchical techniques -  these techniques achieve motion segmentation through the 

successive application of a dominant motion detection algorithm. In each iteration, the 

largest moving object is identified and it is then removed from the image to be processed 

in the next iteration, and then the cycle continues until a partition of the image is achieved 

[WU-1993].

• Markov Random Field (MRF) techniques -  these techniques formulate the motion 

segmentation problem as the probabilistic estimation of a label field, which is modeled by 

a Markov random field. The global energy function resulting from the MRF modeling can 

then be minimized using Bayesian techniques [MURR-1987] [BOUT-1993] [ODOB-

1996], [GELGON-2000].

Motion-based segmentation techniques identify the presence o f a set of moving objects by 

analyzing the estimated motion field. However, motion estimation in uniform image areas is very 

difficult due to the lack of texture information to match between consecutive images. 

Additionally, since motion estimation is sometimes performed using approximate methods, such 

as block-matching techniques, it is very hard to find the exact position of object contours.

Motion-based segmentation also leads to over-segmented partitions by separating several parts of 

the same object that exhibit different motion characteristics. Additionally, different objects with 

similar motion parameters may be merged with each other. To overcome these limitations, the 

integration with other analysis tools, such as using spatial information or user assistance, should 

be considered. Furthermore, motion-based segmentation techniques have high computational cost.

3.2.3 Combined spatio-temporal segmentation

For most applications, the usage of both spatial and temporal segmentation techniques can lead to 

the most reliable results, overcoming the limitations of each o f the individual approaches. This 

combination can be achieved in several ways: temporal after spatial processing, spatial after 

temporal processing, and simultaneous spatial and temporal processing.

For the temporal after spatial processing techniques, a spatial segmentation, as described in 

section 3.2.1, is first performed, and afterwards extra segmentation information is added to the 

spatial-based partition by considering the temporal information. The results of spatial 

segmentation usually contain too many regions, and temporal segmentation information can be 

used to group these regions that belong to the same moving object. Additionally, temporal
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information can be used to maintain the temporal coherence o f objects when segmenting the video 

sequence [CHOI-1997].

For the spatial after temporal processing techniques, temporal segmentation is first performed. Its 

result is then improved by a spatial segmentation step. The temporal partition improvements 

include boundary location correction and inclusion of further regions that are not detected by the 

temporal processing [MECH-1998] [KIM-1999] [WANG-1998].

Simultaneous spatial and temporal processing algorithms are the most powerful approaches. 

Several algorithms perform video segmentation using this type o f technique [SALE-1994] 

[CHAL-1996] [CHOI-1997] [MOSC-1998]. For example, video segmentation based on contour 

tracking belongs to simultaneous spatial and temporal processing algorithms [YILMAZ-2004], in 

which both temporal and spatial information is used to detect and refine the object contour of the 

current frame.

One o f the main advantages of segmentation based on spatio-temporal techniques is its efficiency 

in identifying regions that are homogeneous in either, or both, spatial and temporal features. Good 

tracking of objects throughout the sequence and accurate boundary location are also possible. The 

main drawback is that combining different techniques may result in a high computational cost.

3.2.4 Summary of automatic video segmentation techniques

A summary of the main advantages and disadvantages of the various automatic segmentation 

techniques is presented in Table 3.1. This table presents the characteristics of each of the main 

classes o f segmentation techniques, and the additional particularities of each of the specific 

techniques considered. From Table 3.1, we can find that automatic segmentation techniques are 

most suitable for usage with a given application.

3.2.5 Video segmentation with user interaction

Video segmentation with user interaction, or interactive video segmentation, is nowadays largely 

recognized as ‘an important extra help’ to solve the segmentation problem, if  the application 

allows for it. A large number of references about interactive video segmentation techniques have 

recently appeared in the literature. Some examples are [CHAL-1996] [SMEU-1997] [OCON-

1997] [GU-1998] [KWAK-1998] [MARC-1999a] [MARC-1999b] [MARQ-2000].

For video segmentation techniques, two major types o f user interaction are considered useful:
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Initial user interaction — used to constrain the analysis process at its start. It can specify 

the number of relevant objects to be identified by the analysis processing. It also allows 

the user to select a set o f pixels belonging to each of the objects o f interest, so that they 

can constitute the seeds used to constrain the automatic segmentation algorithm [CHAL-

1996]. Furthermore, initial user interaction can ask the user to define the position of the 

contours for the interesting objects by drawing over the original image [GU-1998].

User refinement — used to refine and correct the automatic analysis results as they are 

being produced. For example, it can correct a segmentation partition in terms of the 

number o f objects or by refining their boundaries. It can correct the image where a certain 

object is said to appear for the first time.
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Table 3.1 -  Summary o f  advantages and disadvantages for automatic segmentation techniques

Segmentation
technique

Advantages Disadvantages

SPATIAL-BASED • Accurate boundaries • Cannot ensure temporal coherency
• Often result in oversegmentation
• Unable to merge regions with similar 

motion characteristics

Thresholding • Low computational cost
• Effective for simple 

scenes

• Only use global image information 
ignoring spatial relationships

Texture-based • Effective for highly 
textures images

• High computational cost due to the 
texture feature extraction

Edge-based • Effective in detecting 
spatial amplitude 
variations in images

• Sensitive to noise
• Requires complex edge link process 

to get closed boundaries leading to a 
partition

Region-based • Effective in detecting 
regions with the selected 
spatial features

• More robust to noise 
than edge-based 
techniques

• Reasonable to high computational 
cost

TEMPORAL
BASED

• Allows temporal 
tracking o f objects

• Unable to detect static objects or 
parts of objects

• Low textured objects are hard to 
detect

• Boundaries may not be very 
accurately located

Change detection • Low computational cost • Allows moving (and all static) 
objects are merged together

Motion-based • Effective in detecting 
regions homogeneous in 
motion

• Objects with similar motion may 
appear merged together

• Differently moving parts o f an object 
are identify as different objects

• Reasonably high computational cost

SPATIO-
TEMPORAL

BASED

• Effective in detecting 
regions homogeneous in 
temporal and/or spatial 
characteristics

• Good tracking of objects
• Precise boundary 

location

• Reasonably high to high 
computational cost

47



Chapter 3. Video analysis and segmentation

3.3 Proposal of contour tracking for video segmentation

This section discusses in detail the proposed video segmentation method, which is based on a 

complexity-scalable contour tracking approach. This method can be classified into the combined 

spatial-temporal segmentation category. In past decades, many methods have been proposed that 

use temporal tracking [WANG-1998] to achieve video segmentation. After being detected and 

segmented from one video frame, the video objects can be segmented by using a video-tracking 

algorithm in the subsequent frame, with semantically meaningful object shape. The difference 

between the proposed methods with other temporal tracking methods is that a complexity-scalable 

contour-tracking algorithm is proposed and employed in segmentation method, which can achieve 

more accurate object boundary detection. Furthermore, as the contour-tracking algorithm is 

complexity-scalable, it can satisfy more application requirements. Before discussing the proposed 

method, a brief review about video tracking techniques is given as follows.

Video tracking has become an important technique for image and video-based applications, such 

as video segmentation (e.g. [MPEG4-2001] [MEIER-1998] [WANG-1998]), video surveillance, 

motion capture (e.g. [MOES-2001]), and gestural human-machine interfaces (e.g. [CROWLEY- 

2000]). Many video tracking methods have been proposed, which can be roughly divided into 

region-based tracking [MEIER-1998] [SCLAR-1998] [GOKCE-2000], contour-based tracking 

[PARAG-2000] [GU-1998], and feature-based tracking [SHI-1994].

The tracking technique in [MEIER-1998] is based on a Hausdorff distance. A binary model for 

the video object is first obtained from the edge image. The method then matches the model to the 

objects in subsequent frames. The object model is updated at every frame to follow the change of 

object shape. This method has the limitation that it cannot deal with complex scenes, and cluttered 

backgrounds. In [SCLAR-1998], active blobs employ a new region-based approach to nonrigid 

motion tracking. Shape is defined in terms of a deformable triangular mesh that captures object 

shape plus a colour texture map that captures object appearance. Nonrigid shape registration and 

motion tracking are achieved by posing the problem as an energy-based, robust minimization 

procedure. However, this method cannot cope with the object occlusion, complex motion and 

deformation.

Instead of tracking pixels of the whole object, contour-based methods track only the contour of 

the object. First, the object contour of the previous fi-ame is projected onto the current frame using 

motion information. Then, the predicted shape is adapted to the object in the current frame. The 

tracking method in [GU-1998] first estimates the parameters o f a perspective motion model and
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then predicts the position o f the contour in the next frame based on these parameters. To deal with 

non-rigid body motion, the method adjusts the approximated boundary by means of a 

morphological watershed. This method can track an object contour with pixel-wise accuracy. But 

it cannot handle large non-rigid movements. Active contours (snakes) are efficient methods for 

tracking both rigid and nonrigid objects [PARAG-2000]. One of the important features of the 

active contour technique is that it can fuse both edge and texture information to improve the 

tracking accuracy.

Recently, particle filters have become popular tools in solving the tracking problem [ISARD-

1998] [PEREZ-2004], which, for the visual tracking context, are pioneered by Isard and Black 

[ISARD-1998], One important advantage o f particle filtering is that it allows the information from 

different measurement sources to be fused in a principle manner. However, within the visual 

tracking context, efficiently fusing different cues has not been fully exploited to increase the 

reliability of object tracking algorithms.

During our research, a complexity-scalable object contour tracking method is proposed, which is 

based on multiple cues (including motion, texture, edge, etc). It can achieve robust object tracking 

under different conditions. In particular, it can achieve complexity-scalable contour tracking so it 

can adapt to different applications and complexity requirements. No prior training is required, and 

a non-parameterized contour model is used. The block diagram for contour tracking algorithm is 

illustrated in Figure 3.8.

This method can be considered as a hybrid scheme of feature-based, region-based and contour- 

based techniques. The proposed scalable contour-tracking algorithm consists of three steps, each 

of which can be exploited for different applications. At first, an object contour is predicted using 

feature-based and mesh-based object tracking schemes. Then, it is refined using texture 

information along the contour region, in which a local maximal likelihood detection scheme is 

conducted. Finally, the active contour model is applied to track object contour with pixel-wise 

accuracy and alleviates the possible error detection in step 2.

The proposed method features the following novelties:

1. A robust piecewise contour prediction scheme is employed, in which reliability 

evaluation is first conducted for the estimated motion vectors o f mesh vertices and a local 

motion model is estimated and used to predict the object contour.
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2. A local maximal likelihood detection scheme is used to correct the predicted contour, 

which is efficient for nonrigid object movement.

3. Both local photometric (foreground/background region statistical properties) and 

geometric (such as edge, contour and region smoothness constraints) information is 

incorporated into the active contour model to further refine the contour.

S T A R T

In^ut video frame

E N D

""‘^The first frame of 
s h o t ? ^

The last frame of 
"M ^video : s h o t ? ^

Step 1: Contour prediction 
from previous frame

Step 3: Further refinement 
based on active snake model

Step 2; Contour refinement 
based on luminance 
statistical distribution

Figure 3.8 -  Block diagram for contour tracking algorithm within one video shot 

3.3.1 Semantic image segmentation

Before carrying out contour tracking to achieve segmentation, we should semantically segment 

and specify the object to be tracked. Using automatic segmentation techniques, as discussed in 

Section 3.2, or using user interaction can achieve this. Some advanced interactive image cut 

algorithms, for example the method in [ROTHER-2004], can also be used to minimize the human 

interaction and achieve semantic object segmentation.

In order to achieve semantic image segmentation o f the first frame, combined spatial-temporal 

segmentation technique is employed. The proposed algoritlim consists o f spatial segmentation, 

and segmentation refinement.
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3.3.1.1 Spatial segmentation

First, morphological open/closing by reconstruction filters are used to simplify the first video 

fi'ame. As we know, morphological open/closing by reconstruction filters have good performance 

for keeping the edge o f the structure while removing small texture pieces whose size is smaller 

than that of the structure element o f morphological filters. In our experiments, the size of structure 

element n is decided by the testing sequence such as the size of frame and complexity of texture.

After getting the simplified image, its gradient is estimated by the Sobel edge detector. The 

gradients of two chrominance components are also estimated and used to improve the 

performance, which is based on the following formula;

Grad = max{«Gy, j3Gfj, )G y} (3.2)

where a ,  J3, and y  are the weighting factors applied.

The watershed transformation algorithm [VINC-1991] is used on the gradient image to get the 

segmentation. Before watershed transformation, the gradient image is thresholded by a value. 

That is, small gradient values, which are less than the threshold value, are set to zero, otherwise 

they remain the same. The threshold value varies from sequence to sequence, which is chosen 

from 8 to 15 in our experiments. After the watershed transformation, the region-merging 

algorithm is used to merge the small-sized patches based on intensity homogeneity.

3.3.1.2 Segmentation refinement

In the proposed scheme, motion, colour, and user input are integrated to merge the adjacent 

‘similar’ patches. Block-matching or change detection algorithm is used to derive the motion 

information. Change detection is more useful for static background/ moving foreground and 

moving background/static foreground sequences, such as Akiyo sequence. However, block- 

matching algorithm is more useful for moving background/moving foreground sequences, such as 

Carphone sequence.

After getting the spatial segmentation results and temporal information, they are fused to get the 

foreground and background objects. The same fusion algorithm in MPEG-4 is used in our 

proposed algorithm to get the final segmentation results -  see Annex F o f part 2 in MPEG-4 

standard [MPEG4-2001]. For example, if  the change detection algorithm is used during the 

motion estimation and when most of the spatially segmented region belongs to the changing 

region in the change detection mask, the whole area of the spatially segmented region is declared
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as a foreground, otherwise it belongs to background. The parts exceeding region boundaries in the 

spatially segmented region can be excluded from the foreground region when the portion of the 

exceeding pixels compared to the neighbouring regions is small. While uncovered parts of the 

spatially segmented region by the object mask can be all foreground when their portion of areas 

are small compared to the part of the region covered by the foreground part of the object mask. 

Sometimes, both foreground and background have similar motion pattern. In this case, user 

interaction is required in order to achieve semantic segmentation.

Figure 3.9 shows the segmentation results for the Carphone sequence using the proposed method. 

During the image simplification process, the size of structure element of morphological 

filters increases from 3x3 to 7x7. The applied weighting factors a , J3, and y  are chosen as 1,

0.5, 0.5 respectively during the gradient fusion. These selected parameters can achieve good 

segmentation performance for all video sequences by fusing the luminance and the chrominance 

components. The gradient value is thresholded by 10 before watershed transformation.

(a)

(c) (d)
Figure 3.9 -  Semantic segmentation of Carphone sequence, (a) Original frame 0. (b) Its spatial

segmentation results, (c) Motion vectors estimated by hierarchical block matching algorithm, and

(d) Final segmentation results.
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Figure 3.10 shows the segmentation results of Akiyo sequence. For this sequence, as the 

foreground object is static and background objects are moving, the change detection algorithm is 

used to extract the motion information.

(c) (d)
Figure 3.10 -  Semantic segmentation of Akiyo sequence, (a). Original frame 0; (b). Spatial

segmentation results; (c) Motion information estimated by Change Detection algorithm and (d)

Final segmentation results

Figure 3.11 shows the process for estimating the motion information of the Akiyo sequence in 

frame 0. (a) and (b) are two video frames; (c) is the difference between these two frames; (d) is 

the change decision based on statistical significant test; (e) is the foreground mask after Bayesian 

estimation and relaxation; (f) is the final foreground mask after post-processing, trying to remove 

the small-size patches.

3.3.2 Complexity-scalable contour tracking for video segmentation

After getting the object with semantic meaning, object contour is used as the descriptor of video 

object. Then, the subsequent video frames are segmented through contour tracking. In our search, 

a complexity-scalable contour tracking scheme is proposed, which includes contour prediction 

using motion, contour refinement using colour information and further refinement through active 

snake model. The detail descriptions are presented in the following subsections.
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(a) (b) (c)

*

»
4

(d) (e) (f)

Figure 3.11 -  Motion information extraction of Akiyo sequence by using change detection

algorithm.

3.3.2.1 Contour prediction

For the object in the previous frame, robust feature points, based on the criteria of [SHI-1994], are 

selected on the object and the object contour is approximated through a series of contour points. A 

mesh model is then constructed using the allocated feature points.

After object mesh construction, both forward and backward motion vectors of control points 

between frame / (x , r - l )  and frame are estimated using the Shi-Tomasi feature-tracking

algorithm [SHI-1994]. That is, the forward motion vector of the ith  node location F, in frame 

f -1 ,  moves to location F) in frame t . Then the backward motion vector at the location F in 

frame t maps back to F." in frame f-1 .

After both forward and backward motion estimation, their motion “reliability” is estimated based 

on both forward and background motion vectors. The “reliability” is evaluated by the following 

formula:
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Re = exp lh-4
20-!

..Ill ^

(3.3)

where 0 ^ 1 8  the free parameter.

From Equation (3.3), it shows that the smaller the difference between F} and F) , the more 

reliable the motion vector o f i th node. For the nodes whose reliability is smaller than a threshold 

(0.3 is chosen in our experiments), they are not considered during contour prediction.

Then, a mesh-based motion estimation scheme [GOKCE-2000] is applied to refine the motion 

vectors o f the control points. The positions o f the nodes with higher “reliability” are initialised by 

the feature-based motion estimation results. The initial positions of the nodes with smaller 

“reliability” are estimated from their neighbours. The mesh-based motion estimation scheme can 

keep the mesh structure during MV’s refinement.

After estimating the motion vectors o f interior points, the points along the contour can be 

predicted from their m nearest motion vectors. The weighted least squares estimation algorithm 

(WLS) is used to determine the affine motion that best describes the motion o f the contour 

segment. Each motion vector is weighed according to its “reliability”.

For a rigid moving object, the object contour is predicted with high accuracy. However, for 

nonrigid moving object, for example, human head profile contour appearance, further refinement 

is necessary.

3.3.2.2 Contour refinement

In this step, it is assumed that the statistical characteristic of pixels of frame t is similar to its 

adjacent neighbors in frame f - 1 .  This step is efficient in tracking objects with large nonrigid 

motion such as the in-plane rotation of human head.

During contour refinement, local maximal likelihood detection is used to refine the predicted 

contour in frame f . Only the pixels in the band around the object contour are employed to 

estimate the statistical properties of foreground and background, in which non-parametric kernel 

density estimation is employed [FORSYTH-2003]. While estimating the local statistical 

properties of contour points in the previous frame, the selected pixels are constrained by rectangle 

and the defined band, as shown in Figure 3.12 (a) for point P .
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The estimated local statistical properties of foreground and background around point P  are used 

to refine the corresponding contour segments around the predicted contour point P' in frame t , 

using maximal likelihood (ML) detection and Bayesian relaxation. First, a band is generated 

around the predicted contour in current frame t . It means that the object contour can only be 

searched in the band. Then, based on the local statistical probability of both foreground and 

background of P , the pixels around P ' , which should also be located in the circle as shown in 

Figure 3.12 (b), are classified as foreground and background. The radius of circle is decided by 

the distance between P' and its neighbour contour points.

As the criterion of this step is that the statistical characteristic of the pixels of frame t is similar to 

its adjacent neighbours in frame f - 1 , it is efficient for tracking the object with large nonrigid 

motion such as human head in-plane rotation. However, as the contour smoothness constraint is 

not employed during refinement, some contour parts are zigzag-patterned and visually 

uncomfortable, especially for the position where statistical probabilities of foreground and 

background are similar. Therefore, further refinement is necessary to get smooth object contour.

Background Background

Estimated

Object contour ^  Final object contour
contour points

Figure 3.12 -  Illustration for contour refinement process; (a) estimating local statistics of 

foreground and background around P in previous frame; (b) refining contour segment around the

estimated P' in current frame.

B.3.2.3 Further refinement using active snake

After contour prediction and refinement, a precise object contour can be achieved if there is high 

contrast between the tracked object and background along the contour. If the contrast is low, the 

generated contour is a zigzag and some contour shape errors may occur.

In the third step, the active contour model is used to refine the contour further. Suppose that N
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discrete points are selected, which have similar foreground and background surroundings, along 

the given contour c . The discrete snake energy Ê nake can be expressed as follows:

=  S  =  Z  (^ inu , +  )  =  Z  (^ inu , +  ^edge ., +  ^reg,on.i ) (3.4)

where each £. depends on the contour segment between up to three points v,_j, v, and v,+,. In our 

research, the dynamic programming algorithm in [AMINI-1990] has been used to search for the 

maximum of Equation (3.4).

During algorithm implementation, for node i , the search locations are restricted along the bisector

lines of the angle Zv,v,_,,v,v,^, . As the points are placed at regular intervals along the contour, the 

internal energy in node / is selected as:

^inu = 2 - 2 c o s Z v ,v ,_ , ,v ,v ,+ , (3.5)

An edge map is selected as one part of external energy E^^ of Equation (3.4). The Canny edge 

detector has been used to obtain the edge map. Low threshold has been used during edge detection 

to detect the weak edge. Short edges are removed in order to reduce the effect of noise. A binary 

edge map BinaryEdgeMap is generated, which is then smoothed by Gaussian filter with variance

(Tg ( a ,  =2  is selected in the experiments). The average gradient along the contour segment is 

used as external energy .

'e d g e j

BinaryEdgMap^^ B inaryE dgeM ap (v.v,. ,̂ )
(3.6)

object

background

object

background

(a) (b)

Figure 3.13 -  Region energy calculation for different situations

background

(C)

In the proposed algorithm, regions force is employed, in which mutual information between 

image intensity and its label is maximized [KIM-2002].
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= ff(/(i:)) -  P r(i(x )= F)h {i {x \ l {x) = f )  -  P r ( i( i)= F )iî( r( ï) |i(* )= b )

where B and F  represent the background and foreground respectively within the support S , as 

shown in Figure 3.13. Eregionji will be maximized if  and only if  the labelling !,(•) gives the 

correct segmentation [KIM-2002], as in Figure 3.13 (c).

 ̂ W = ̂ )=- i Wlog Pfz (3 8)

Pr(x|l(x)=F ') and Pr(x|Z,(x) = 5 ) are the density of foreground and background which are 

estimated using the fast gauss transform algorithm in [CHAN-2001].

After achieving the object contour o f frame object mesh structure and contour approximation 

are updated in order to track object contour along the whole video sequence.

3,4 Experimental results and analysis

Several sequences have been used to test the performance o f our proposed methods. For 

Motr_dhtr and Claire Sequences, the experimental results are shown in Figure 3.14 and Figure 

3.15, respectively.

For the Motr_ dhtr sequence, 700 frames are segmented without human interaction except for the 

first frame. Figure 3.14 (a) shows the predicted contours of four frames using motion information. 

For most sequences, the performance is acceptable. Large prediction errors may occur if  in-plane 

rotation happens, such as the bottom-left image in Figure 3.14 (a). Figure 3.14 (b) illustrates the 

refined object contours. The object contour can be detected correctly.

Figure 3.15 shows the segmentation results of Claire. The proposed algorithm can segment 500 

frames without human interaction after the first frame. The experimental results show that this 

contour tracker is robust for tracking nonrigid motion, even with partial occlusion, as shown in 

Figure 3.14, and Figure 3.15.
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(a)

(b)

Figure 3.14 -  Video segmentation results (four frames) for Motr_dhtr sequence, (a) Results after 

contour prediction; and (b) Results after further refinement using active snake

One reason for the success of this algorithm is the use of band constraint during the refinement 

process. There are several advantages of using the band around the contour compared to using the 

complete region during probability estimation and pixel classification:

• First, it allows object tracking by adapting to the local changes around the object contour;

• Next, the contour search space is reduced, which can save the computational time;
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Furthermore, the effects of noise and artefact from both foreground and background are 
reduced.

Most importantly, the proposed contour tracking algorithm can achieve complexity-scalable 

object tracking. Based on the requirements of the tracking accuracy, not all of the steps of the 

proposed scheme need to be implemented. This can release much computation burden.

In our proposed algorithm, contour prediction and contour refinement steps achieve the effective 

prior result of current frame. It is a prediction taken from the posterior result of the previous 

frame. Further refinement step using active contour can be considered as the measure process, in 

which the observation information of current frame is used to refine the contour.

Figure 3.15 -  Video segmentation results (four frames) for Claire sequence after further

refinement using active snake

3.5 Conclusions

In this Chapter, the importance of video segmentation for object-based or model-based video 

coding has been explained. Moreover, the main objectives of video segmentation have been 

presented. For video segmentation, the main conclusion was that there are many techniques 

available, but individual techniques often consider specific constraints, and thus provide useful 

results only for the targeted applications, showing intrinsic limitations for dealing with generic 

audiovisual sequences content. For instance, a spatial segmentation technique does not take the 

temporal information into account, and a temporal segmentation algorithm is not able to identify
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static object. Since video segmentation is recognised as a complex problem, the solution often 

consists o f the combination o f several analysis techniques in order to exploit their advantages and 

overcome their shortcomings. Whenever possible, user interaction should be allowed to guide the 

process, and correct or improve the automatic segmentation results.

After reviewing the main segmentation algorithms, a contour-tracking algorithm has been 

proposed and employed for video segmentation, which can achieve complexity-scalable object 

tracking with different tracking accuracies. In this algorithm, a combined spatial and temporal 

segmentation technique has been used to detect and segment the video object to be tracked. Its 

contour is used to as the initialisation of the contour-tracking algorithm. Sometimes, user 

interaction is required to achieve semantic video object segmentation for complex video 

sequences.

After initialising the object contour, a three-step contour-tracking algorithm is proposed to detect 

the object contour o f the subsequent frames. The tracking results o f each step can be used for 

some special applications with different accuracy requirements. The proposed video segmentation 

algorithm can be considered as a hybrid feature-based, texture-based and contour-based tracking 

algorithm.

The experimental results show that this contour tracker is robust for tracking the object contour 

with nonrigid and large motion, even with partial occlusion. Further research is being conducted 

within the EC FP6 funded VISNET project (http://www.visnet-noe.org) to improve the 

performance of contour tracking algorithm and to achieve the multiple object contour tracking 

with a view to comparing the proposed method with the particle filtering method.
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Chapter 4

Face Detection and Its Scalable Modelling

4.1 Introduction

Due to the application of the pre-deflned 3D wireframe model in both encoder and decoder, 3D 

model-based video coding can achieve very low-bit rate coding. Only the analysis parameters 

need to be transmitted to the decoder. In 3D model-based coding, the encoder tries to recognise 

the objects (such as faces) in a video scene. As soon as the coder recognises an object, it uses 

human knowledge about this object to improve the coding performance. For head and shoulder 

sequences, the algorithms for facial feature recognition and face model adaptation are proposed in 

[KAMP-1997b], These algorithms include:

• Detection o f face features, such as eyes and mouth, including their comers and 

contours;

• Adaptation o f the predefined face model to the detected human face by scaling the face 

model horizontally to match the distance between the eyes and vertically to match the 

distance between the mouth and eyes;

Experimental results show that the efficiency o f 3D model-based video coding exploiting the 

priori knowledge of objects is higher than that of object-based video coding without priori 

knowledge o f objects [KAMP-1997b]. For the proposed scalable 2D model-based video coding 

scheme, a priori knowledge on detected objects can also be employed during the coding of head- 

shoulder sequences, although the proposed scheme is rather universal and not limited to coding 

head-shoulder sequences,

This chapter addresses the algorithms for face detection, scalable face model design and its 

performance evaluation. After reviewing the main face detection techniques, a robust and 

adaptive face detection method is proposed, which is based on piecewise skin colour distributions.
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Next, reliable algorithms are proposed for detecting eyes, mouth and chin that are used to verify 

the face candidatures. Then, based on the detected facial features and facial muscular 

distributions, a heuristic scalable face model is designed to represent the rigid and nonrigid 

motion of head and facial features. An efficient motion estimation method is proposed to evaluate 

the efficiency of the designed model. The proposed method features three major novelties:

• A robust and simple face detection scheme is proposed. Ulumination-piecewise 

statistical skin colour model and Bayesian detection/relaxation schemes can achieve 

robust detection to different lighting conditions and skin colour.

• A reliable and simple facial feature detection scheme is proposed, which is very 

important for its application to scalable 2-D model-based video coding.

Facial muscular distribution is introduced to build the scalable face model, which can 

• describe face motion more precisely, hence reducing the warping error during scalable 

model-based video coding.

4.2 Face detection techniques: A review

In recent years, facial feature detection has received considerable attention due to its wide range 

o f applications, such as face recognition, human computer interface, and model-based video 

coding. Many approaches have been proposed [ROWLEY-1998] [SUNG-1998] [MAIO-2000] 

[SOBOTTKA-1996] [HSU-2001] [KUO-2002] [WONG-2003]. These approaches apply different 

techniques, such as neural networks (NN), support vector machine (SVM), geometrical 

modelling, motion extraction, and colour analysis. Ming-Hsuan Yang gives a more detailed 

review on face detection algorithms [YANG-2002]. Existing face detection techniques can be 

classified into four categories, as listed in Table 4.1. These categories are:

1. Rule-based methods.

These methods are designed mainly for face localization [YANG-1994] [KOTROP-

1997]. They encode human knowledge of what constitutes a typical face. Several rules are 

proposed and employed during face detection. Face features in an input image are 

extracted first, and face candidatures are identified based on the coded rules. A 

verification process is usually applied to reduce false detections. One problem with these 

methods is the difficulty in translating human knowledge into well-defined rules. If the 

rules are too detailed or strict, they will fail to detect faces that do not pass all the rules.
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Moreover, it is difficult to extend these approaches to detect faces in different poses since 

it is challenging to enumerate all possible cases.

2. Feature invariant approaches.

The underlying assumption o f these methods is based on the observation that humans can 

effortlessly detect face and objects in different poses and lighting conditions and, so, there 

must have features which are invariant over these variabilities. These algorithms aim to 

find structural features that exist even when the pose, viewpoint, or lighting conditions 

vary, and then use these to locate faces. These methods are designed mainly for face 

localization [GRAF-1995] [LEUNG-1995] [YOW-1997] [DAI-1996] [MCKEN-1998]. 

One problem with these methods is that the image features can be severely corrupted due 

to illumination change, noise, and occlusion. So they are not robust enough.

3. Template matching methods.

In template matching, a standard face pattern is manually predefined or parameterised by 

a function. Given an input image, the correlations between an input image and the stored 

patterns are computed for detection. The existence of a face is determined based on the 

correlation value. These methods have been used for both face localization and detection 

[CRAW-1992] [LANrriS-1995] [DENG-1997]. The advantage of these methods is 

simple implementation. However, it has proved to be inadequate for face detection since 

it cannot effectively deal with variation in scale, pose, and shape.

4. Appearance-based methods.

In contrast to template matching, the models in appearance-based methods are learned 

from a set of training images that should capture the representative variability of facial 

appearance. In general, appearance-based methods rely on techniques fi*om statistical 

analysis and machine learning to find the relevant characteristics o f face and non-face 

images. These methods are designed mainly for face detection [TURK-1991] [SUNG-

1998] [ROWLEY-1998] [OSUNA-1997]. [RAJAGO-1998] [COLMEN-1997]. The 

disadvantage of these methods is the computational complexity for learning the face and 

non-face models.
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However, some techniques can be classified into more than one category [GOVIND-1996] 

[WONG-2003]. For example, template-matching methods usually use a face model and sub­

templates to extract facial features, and then use these features to locate or detect faces.

Table 4.1 — Summarisation of the algorithms for face detection within four categories

Approaches Representative algorithms
Rule-based approaches

Multiresolution rule-based method [KOTROP-1997].

Feature-invariant methods

-  Facial feature
-  Texture

-  Skin colour

-  Multiple features

Grouping o f edges [YOW-1997].
Space Gray-level dependence matrix of face pattern 
[DAI-1996].
Mixture of Gaussian [HSU-2001] [MCKEN-1998] 
[CHAI-1999].
Integration of skin colour, size and shape [KJELD- 
1996] [SOBOTIKA-1998] [WONG-2003].

Template matching algorithms

-  Pre-defined face model

-  Deformable templates

Shape template [CRAW-1992].

Active shape model [LANITIS-1995].

Appearance-based schemes

-  Eigenface

-  Neural network and Naïve Bayes 

Classifier

-  Support Vector Machine (S\HVQ

-  Hidden Markov Model (HMM)

-  Information-theory approach

Eigenvector decomposition and clustering [TURK- 

1991].

Gaussian distribution and multilayer perception 

[SUNG-1998] [ROWLEY-1998].

SVM with polynomial kernel [OSUNA-1997],

Higher order statistics with HMM [RAJAGO-1998]. 

Kullbackrelative information [COLMEN-1997],

4.3 Proposal for automatic face detection

In this section, an automatic face detection technique is investigated. Although many face 

detection techniques have been developed in the past, one o f the disadvantages of these methods, 

such as [SUNG-1998], [SOBOTTKA-1996] [SOBOTTKA-1998] [HSU-2001] [CHAI-1999] 

[KUO-2002], is heavy computational complexity (some o f them include training), which makes 

them unsuitable for the proposed scalable 2D model-based video coding. Another disadvantage is
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that they are not robust enough to cluttered backgrounds and different lighting conditions. In our 

research, an automatic face detection technique has been proposed, which includes the algorithms 

for face detection, eye-mouth extraction and chin detection. These proposed algorithms are 

discussed in the following subsections.

4.3.1 Face detection and eye-mouth extraction

The proposed face detection algorithm consists of face localisation, eyes detection and mouth 

extraction. During the detection process, it is assumed that the faces in video sequences are in 

frontal or near-frontal views. This assumption is reasonable to the application of scalable 2D 

model-based coding. It can also make facial feature detection and scalable face modelling easier.

4.3.1.1 Face localisation

A robust and adaptive face segmentation method is proposed to locate and regularise face 

candidatures. The method is based on luminance-piecewise skin colour distributions. It consists of 

three steps:

1. Detect face candidatures based on a luminance-piecewise statistical skin colour model 

and Bayesian decision/relaxation;

2. Regularise the face candidatures using spatial segmentation results;

3. Evaluate face candidatures using both shape and size.

There are many methods to locate face candidatures based on skin colour model [CHAI-1999] 

[HSU-2001]. However, it is found that none o f these methods can detect the face robustly under 

poor and strong lighting conditions. The detected face is full of holes, or in a zigzag shape. In fact, 

the skin colour model, that is, the distributions of chrominance components C^ and , is related 

to the illumination value Y . In our research, non-parametric kernel density estimation is used to 

build the piecewise statistical skin colour distributions. 43 million skin pixels from 900 images in 

[PHUNG-2002] are used to train the skin models as shown in Figure 4.1. In order to increase its 

robustness to different lighting conditions, the skin models are separated into 6 parts based on 

luminance value Y , as shown in Figure 4.1 from (a) to (f). It is shown that Figure 4.1 (a) and (Q 

have totally different statistical properties from other models in (b) -  (e). These two cases are very 

important for the face detection for dark skin colour and under different lighting conditions.
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Figure 4.1 -  Statistical distributions of human skin colour with different luminance values

In our research, the pixels are classified based on Bayesian decision and relaxation in order to 

minimize the fault decision. Let x  be the feature vector of a pixel. Let p{x | û?, ) and p{x | ) be

the class conditional probability densities o f skin colour class and non-skin colour class 

respectively, where 6?, and (O2 represent skin colour class and non-skin colour class respectively. 

The decision commonly involves the following process:

I f  L{X ) =: ^  r / / ,  then x e û j ,
p{x\0)2) ‘ (4.1)

else XGÛ),
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By applying the Bayesian formula and minimizing the misclassification cost, the following 

relation exits:

then xGOj (4 .2 )
else x^CÙ2

where loss parameter j  means the loss incurred when a pixel of type i is classified as having 

type j .  Since loss associated with correct classification should not affect the design of the 

classifier, C,.,■ = Cj j = 0 . During the experiments, we select Q 2 = 2 * so as to detect all of

the possible face skin pixels. Furthermore, it is very hard to get the non-skin class conditional 

probability density of all kinds of backgrounds pixels, and prior probabilities and p(û?2 )' 

Hence, it is assumed that the non-skin class conditional probability density conforms to uniform 

distribution, and the probabilities and are equal. Therefore, the threshold TH in

Equation (4.1) is calculated to be 0.5.

The above decision process does not take the relationship among adjacent pixels into 

consideration, that is, the neighbours o f a skin colour pixel are more likely to be skin colour 

pixels. Therefore, after Bayesian classification, the Bayesian relaxation algorithm proposed in 

[AACH-1993a] [AACH-1993b] is exploited. The decision is based on the following formula:

-5̂  ^ ( î ’̂  + 8* (5  + c )-4 * (v 5 (5 )* B  + Vc(j)*C)) then xecoi

else x e a )2

where Vg (y) is the number of skin pixels which border pixel x  horizontally or vertically, and 

Vc-(s) is the number o f skin pixels that are diagonal neighbours of pixel x .  The cost parameters 

B  and C in relaxation algorithm are so-called potentials, which, when positive, incur an energy 

increase for each border pixel pair present in a change mask [AACH-1993b]. In our experiments, 

B and C are chosen to 0.25 and 0.125 respectively, which can achieve stable and reliable results.

After Bayesian decision and relaxation, spatial segmentation is used to regularise the face 

candidatures. Watershed transform is used to achieve spatial segmentation. Face candidatures are 

then superimposed on top o f the spatial segmentation mask to regularise the shape o f the face 

candidature. In our experiments, if 80% o f the spatially segmented patch belongs to a face 

candidature, the whole segmented patch is considered as part of the face candidature. If 20% of 

the spatially segmented patch belongs to a face candidature, the whole segmented patch is not part 

of the face candidature. However, if the ratio lies between 20% and 80%, no change occurs.

68



Chapter 4. Face detection and its scalable modelling

For every candidate, the size and shape are evaluated, assuming that human faces in the video are 

not too small and their shape is characterized by elliptical or oval shape [SOBOTTKA-1998]. 

Some face candidatures that do not meet the above conditions are considered as non-face patches.

Figure 4.2 demonstrates the results of face localization algorithms by using (a) the skin colour 

model in [CHAI-1999] and (b) the proposed skin colour model. The images have the same bright 

lighting conditions. The left hand images in (a) and (b) are the original images containing the face 

candidature. The right hand images are the detected face candidatures. The results show that our 

proposed skin colour model can locate the face more precisely.

(a)

(b)

Figure 4.2 -  Face localization using different skin colour models, (a): Original image and the 

detected face candidature using literature method in [CHAI-1999]: (b): Original image and the 

detected face candidature using our proposed method. The left images of (a) and (b) are the 

original images and the right ones are the localised face candidature.

Figure 4.3 shows the face location results for several sequences under different lighting 

conditions. Parts (a) and (b) are the sequences captured in the Labs with controlled lighting 

conditions. We can find that the proposed skin colour model can locate faces correctly under both 

bright and dark lighting conditions, which can not be achieved by using the skin colour model in 

[CHAI-1999]. Several standard video sequences are also used to test the performance of our 

proposed scheme, such as Miss_am, Claire, Akiyo, Carphone, etc. The detection results of Akiyo 

and Carphone sequences are shown in parts (c) and (d) of Figure 4.3. More face localisation 

results are presented in section 4.5.
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%
(a)

(b)

(c)

(d)

Figure 4.3 -  Results of face localization algorithm. The images in left column are the original 

images; and the images in right column are the localized face candidatures

4.3.1.2 Locating eyes and mouth

After locating face candidatures, the eyes and mouth should be detected to verify the face 

candidatures. As it is assumed that the detected face is frontal or near-frontal view, it is not 

difficult to detect the eyes and mouth.
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In our research, colour and luminance are used to locate eye and mouth position, which is based 

on the observation that high and low values are found around the eyes, and eyes contain 

both dark and bright pixels in the luminance part. The mouth region contains red lips and some 

pixels with small luminance value are located between the upper and lower lips. The search 

procedures for eye and mouth candidatures are illustrated in Figure 4.4. They can be described as 
follows:

• Enhance and by using histogram equalisation; Calculate colour map 

MapC = + ( 2 5 5  -  C,. ) , and then enhance it using histogram equalization;

• Emphasize the dark pixels in the Y component using the morphological dilation 

operation, and calculate the map: M apY = {dilationty)l{errosion(Y) + (iSi^(i\:^. Then, 

enhance it by using histogram equalisation;

• Calculate eye/mouth decision map: EyeMouthMap ~ MapY -^MapC, and normalize it 

to brighten both eyes and mouth, and to suppress other noises;

• The eye and mouth candidatures are initially estimated by iterative thresholding of 

EyeMouthMap . The iterative thresholding method in [PEREZA-1987] is used.

The search region is restricted to the located face candidatures. Figure 4.5 shows the results o f the 

above search procedures for the Carphone sequence, and the final location o f the eyes and mouth. 

In Figure 4.5, (a) is the luminance component; (b) and (c) are the enhanced and C^ . (d) and 

(e) show the calculated maps MapY and M apC . (f) is the calculated EyeMouthMap and is used

to locate the position of eye-mouth candidatures in (g). Experimental tests show that the proposed 

method has two advantages when compared with that in [HSU-2001]:

• First, it requires less computation for eye-mouth localisation, which can save about 30% 

computational complexity for different face sizes.

• Next, it is more robust for faces with different kinds of lighting conditions because 

some lip colour is faint or is similar to its surrounding skin.
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Input face candidature

Enhance and C  ̂ components

Calculate colour map; MapC = + (255 - C ^ )

Iterative thresholding o f EyeMouthMap , and 

eye/mouth candidature decision.

Calculate eye/mouth decision map: 

EyeMouthMap = MapY + M apC ,

Calculate the luminance map: 

MapY = {dilation{Y^l{errosion{Y)+0.

Figure 4.4 -  Flowchart o f search algorithm for eye and mouth candidatures

(e) (f) (g)

Figure 4.5 -  Illustration o f face feature detection for Carphone sequence
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4.3.1.3 Verifying eyes and mouth pairs

For the detected eyes and mouth candidatures in Figure 4.5, there are 6  eye or mouth candidatures 

and c l  -  20 kinds of eye-mouth combinations, theoretically. However, the geometry and 

orientation information can be used to reduce this number. In our research, the symmetry of eyes 

and mouth localization are proposed to verify the eyes and mouth pairs. Figure 4.6 illustrates the 

geometry and orientation relations among face, eyes and mouth. The following criteria are used 

during verification, which are satisfied for frontal or near-ffontal view of faces:

Face direction

Me
Ml

M r

^2\  EyC'inouUk niaugle diiccdoii

Figure 4.6 -  Face and facial feature geometry and orientation

1. The face is upright and eye pair should be located in the upper half face (above the 

minor axis of the fitted ellipse. This can reduce the number of eye-mouth pair from 20 

to 9 for the face candidatuie in Figure 4.5.

2. For every face candidature, the direction 6̂  ̂ of the major axis of the fitted ellipse 

should be almost the same as the direction o f the vector fi om the midpoint of the two 

eyes to the mouth . If the difference between 6̂  and 9  ̂ is less than a threshold (10 

degree is used in our experiments), it is a face. Otherwise, it is not a face.

3. The vector, which is perpendicular to the interocular segment {E^Ei in Figure 4.6) and 

passing the midpoint of two eyes, should pass the mouth candidatures.

4. The line passing two mouth comers should be almost parallel to the line passing two 

eyes. This means that the 6̂ , and 9^ in Figure 4.6 should be the same (5 degree 

difference is tolerated).

73



Chapter 4. Face detection and its scalable modelling

Experimental results show that the eye-mouth pair can be detected and verified correctly based on 

the above four criteria. 50 face images are tested and the detection correction rate of eye-mouth 

pairs is 100%. Experimental results show that the computational complexity of the proposed 

method is about 30% - 50% of that of the method in [HSU-2001].

4.3.1.4 Detecting the corners of eyes and mouth

After locating the position of the eyes and mouth, their four comers are detected to build the 

scalable face model. For eye comer detection, two methods have been proposed for different face 

sizes.

• If face size is small (smaller than 32 x 64), the method is based on the Morphological 

Open by Reconstruction Filter (MORE) and thresholding.

• Otherwise, a deformable template matching algorithm is used to detect the eye comers 

with high accuracy, but also with high computational complexity.

For detecting eyes with a small size face, the procedure consists of:

• MORF is used for the eye patch, followed by thresholding in order to obtain a binary 

map.

• For every column of this patch (from left to right), the first and last columns with zero 

elements are chosen as the column on which the eye comers are located. The centre of 

the eye can be estimated based on the eye comers. This scan step is illustrated in Figure 

4.7.

Fnniti kft to light
From

Top 

To 

Bottom i

IIBOnD LH 

«ifitEjuyiHBiieiu;.

From

Top

To

Bottom

Fiom right to left

Figure 4.7 -  Scan procedure for eye comer detection
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• The upper and lower eyelids (two points) can be estimated, as the line joining these two 

points is perpendicular to the line joining the two eye comers.

For detecting eyes of larger size, it is not easy to estimate the eye comers precisely by using the 

above method. Deformable template matching algorithm is used. The edge and valley energies are 

used to adjust the template, and are defined as those in [YULLE-1992]. Interested readers are 

referred to [YULLE-1992] for the detailed descriptions.

For mouth comer detection, deformable template matching algorithm is used to detect the four 

mouth comers. However, several modifications are made to improve its speed:

• The SUSAN comer detector [SMITH-1997] is used to detect the right and left mouth 

comer candidatures. This can reduce the search region for deformable template 

matching.

• Lip colour distribution is used to further reduce the search position of the deformable 

template. Colour distribution inside the mouth is modelled as a Gaussian mixture with 

three components: a dark aperture, pink lips and bright reflection of light from the teeth 

or lips. The parabolas of the upper and lower lips should try to include more pink lips in 

the template.

Figure 4.8 shows the eyes, and mouth detection results of Akiyo and Carphone sequences. It 

shows that eyes and mouth can be detected precisely by using the proposed methods.

(a) (b)

Figure 4.8 -  Eyes and mouth detection for Akiyo and Carphone sequence
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4.3.2 Chin Detection

For video coding o f videophone sequences, the human face undergoes both rigid and non-rigid 

motion. In order to represent the face motion precisely and reduce the warping error, efficient chin 

detection algorithm is necessary.

Several methods have been proposed to estimate the chin contour [RUDIA-1996] [KAMP-1997a] 

[GOTO-2002] [AHLBERG-2002]. Although the authors claim that their methods can achieve the 

optimal chin position, which is commonly decided subjectively, their methods have been proved 

to have some shortcomings. In [RUDIA-1996], the active contour model (Active Snake) has been 

used to estimate the chin contour. The active snake model is an energy-minimizing spline 

influenced by external forces and image features. However, when the chin contour appears 

loosely marked due to weak contrast of the chin in relation to the neck below it, the reliability of 

the Active Snake model is low. Furthermore, the initialisation o f the Snake and the chosen 

external force affect its performance seriously. In [KAMP-1997a], the concept of deformable 

templates is used to estimate the chin contour. Two parabolas are used to represent the chin. A 

cost function is minimized to find the best fit of the template to the chin. However, experimental 

results have shown that a deformable template can only be used for chins with parabola-like 

shapes, for example, the chin o f Akiyo and Claire. It cannot detect the chin o f Carphone correctly. 

This is due to the variety of chin shape.

In [GOTO-2002], the described chin detection method consists of three steps. First, three points 

are found on both sides and the bottom tip o f the chin. Next, a curve is found to connect these 

three points. Finally, the position of this curve is modified to fit the chin better. However, it is not 

easy to find these three points. If the camera is not placed exactly in the front view, the curve 

fitting result cannot be accurate. In paper [AHLBERG-2002], Ahlberg presented a way to regard 

the facial feature detection problems as an optimisation problem. Deformable graphs are used to 

represent the relative position of features. However, this method is very complex and time- 

consuming. The results given in [AHLBERG-2002] are not satisfactory.

In our research, an efficient chin detection method is proposed, which combines deformable 

template matching with the active contour method. The prior chin shape is trained and exploited 

in the active contour model to improve detection accuracy. The proposed method features three 

major novelties.
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1. A defonnable template-matching algorithm is applied to initialise the chin contour.

Therefore, no user interaction is needed to initialise the snake model. It can also avoid the

disadvantage of the method in [GOTO-2002].

2. In order to reduce the effect o f weak chin edges and strong background edges, an edge 

normalization step is introduced. Gradient vector flow (GVF) [XU-1997] is used to get 

the smoother external force, which is derived from the normalized edge distribution.

3. Chin shape priors are trained and are included in the active snake model to improve its

robustness to weak contrast o f the chin in relation to the neck below it, and partial

occlusion.

Li section 4.3.2.1, the deformable template matching method is discussed for initial chin 

detection. Section 4.3.2.2 describes the refinement of chin contour by using the active snake 

method, which includes the scheme description, edge detection and the GVF calculation, and 

prior shape training.

(b)
Figure 4.9 — (a) Deformable template model for the chin contour; (b) Search region for points A,

B and C.

4.3.2.1 Initial chin estimation

It is known that the initialization o f the active snake model will affect its final detection 

performance. Sometimes, user interaction is required for the initialization, such as in [RUDIA-

1996], In order to initialize the active contour model automatically, a deformable template 

matching method is employed to initially estimate the chin contour. The deformable template for 

the chin contour is shown in Figure 4.9 (a), which can be described by the positions o f A , B  ̂and 

C . The points d\ and d l  are the detected mouth comers. Points B and C belong to the chin 

parabolas and are located on the line which goes through the mouth comers. Based on the
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positions and (xç^y^) of A, B, and C, respectively, the chin contour can be

described. During our experiments, it is found that the accuracy and complexity of the deformable 

template matching method are affected by the search ranges of point Ay B , and C . The search 

ranges o f vf, B , and C during the detection process are different from those used in [KAMP- 

1997a] to make the search more robust, which are shown in Figure 4.9 (b).

In order to reduce the computational complexity further, the position of Ay B , and Ccan be 

estimated sequentially. The detailed procedures are described as follows:

1. Points B and C are estimated by using the gradient value o f chrominance difference 

Cj. -  Cl,. They are searched along the line that goes through the mouth comers. They are 

also in the detected face region.

2. Point A is moving in the search region to maximize cost function. The luminance valley 

and the gradient are combined as the cost function. A larger search range is used for point 

A in order to make it robust for all circumstances, such as face rotations.

The detected chin contour is decided by maximizing the total energy along the chin contour, 

which is defined as:

^ to ta l ~~ ^valleys ^Gradient  C ^ ' ^ )

v̂alleys ~ Normalize(255 ~ Y )  (4.5)

E gradient = Normalize(sqrti^^ + )) (4.6)

where function Normalize{x) normalizes the value x  to the range [0,l]. The detected chin 

contour is used as the initial position of the active snake.

4.3.2.2 Refinement of chin contour

4.5.2 .2 .1 General description

Not all chin contours have a parabola-like shape. For example, the deformable template matching 

method does not perform very well for the Carphone sequence. Therefore, a refinement step is 

needed to get correct chin detection for all of the test sequences.
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In our research, the snake (active contour) model, incorporating prior chin shape, is used to refine 

the initial chin contour. The snake is an energy-minimizing spline, defined within an image 

domain that can move under the influence o f internal forces within the curve itself and external 

forces derived from the image data. The internal and external forces are defined so that the snake 

will conform to an object boundary or other desired features within an image. However, this 

method may be sensitive to the starting position and may leak through the object if  the edge 

feature is not salient enough in a certain region of image. In our research, a prior chin shape 

model is trained and incorporated in order to improve the robustness of the active snake.

There are many methods incorporating prior shape during boundary finding [STAIB-1992] 

[COOTES-1995] [YONG-1998]. The method in [YONG-1998] is selected in our investigation 

due to its less computation, which is ten times faster than the method in [COOTES-1995]. The 

objective is to maximize the a posterior density o f the final shape given the input edge image and 

shape parameters, which can be expressed as (similar to that in [YONG-1998]):

J  = argmax 
Q

r
(+1

A * + A2 ^ sn a k e (4.7)

where vector 0  = (^ i,9 2 >*“ ^f+i) is the pose and shape parameters, which will be defined and 

discussed in section 4.3.2.2.3. is the mean value of shape parameters, which is defined to be 

zero relative to the mean shape, cr? is the eigenvector’s corresponding eigenvalues calculated 

from the train sets. Anofe i® snake gradient-curvature energy along current snake contour. 

and P2  are used to balance the influence of the shape model and snake model. The trade-off 

between shape and image depends on how much faith one has in the shape model and the imagery 

for a given applications. In our experiments, we set these parameters empirically as P ^ = l  and

A = l -

Above maximization can be achieved using the following processes:

1. The active snake model guides the contour evolution, which maximizes the cost 

function .

2. Update the pose and shape parameter vector Q to best fit the newly found points, 

which can also maximize Equation (4.7).

3. Repeat until convergence
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The detail description o f above processes are presented in section 4.3.2.2.2 and section 4.3.2.2.3

4.3.2.2.2 Snake-guided contour evolution

The objective of the first step in the above maximization algorithm is to evolve the contour to 

position with large gradient. Instead o f using the active snake model in [RUDIA-1996] directly, 

the following improvements have been conducted in order to achieve robust chin detection;

• First, Caimy edge detector [CANNY-1986] is used to detect the weak edge by selecting 

its proper parameters and generate the binary edge map. Commonly, there exists weak 

contrast of the chin in relation to the neck below it.

• Next, in order to get a smoother external edge and wider convergence range, GVF is 

calculated and used as the external force, instead of using binary edge map directly.

Suppose that N  discrete points are selected along the given active contour C . The discrete snake 

energy can be expressed as follows:

£,.*,= Z£, = f  («!,«+£„,,,) (4.S)/«o

where each £. depends on the contour segment between up to three points v,._j, and .

The dynamic programming algorithm in [AMINI-1990] has been used to search for the maximum 

of (4.8). In the implementation, for node i , the search locations are restricted along the bisector

lines of the angle Zv,vy_,,v,v,+,. As the points are placed at regular intervals along the contour, the 

internal energy in node i is selected as:

^inU =  2 -  2C0SZVyVy_i, VyVy+i (4 .9 )

In our research, an edge map is selected to induce the external energy Eĝ f. The Canny edge 

detector has been used to obtain the edge map [CANNY-1986]. The low threshold value that is 

used in the hysteresis step of the Canny edge detector is set to 0 in order to detect the weak chin 

edge. Short edges are removed in order to reduce the effect o f noise in the face area, and a binary 

edge map ‘ BinaryEdgeMap ’ is generated.

If the binary edge map is used directly, the convergence o f the active contour algorithm is still 

affected by the chin shape. In order to improve its convergence, gradient vector flow (GVF) [XU-
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1997] is used as the external force, instead o f using gradient directly. The main advantage of the 

GVF is that it can capture a snake from a long range and extract it into concave regions.

We define the edge map f { x y y )  = BinaryEdgeM ap  ̂ which is derived from the detected face

patch. Gradient vector field is the vector field K(x, y ) = (w(x, y ), v(%, y)) that can be derived by 

minimizing the following frmction:

(4.10)

where u and v are the horizontal and vertical coordinates of vector field V respectively; // is a 

regularization parameter governing the trade-off between the first term and second term. This 

vector field is smoother than the gradient when there is no intensity change. Particularly, when

ly/"! is small, the energy is dominated by partial derivatives of the vector field. On the other 

hand, when |V/ |̂ is large, the second term dominates the integrand and is minimized by setting

r = |v / | .

Using variational calculus, the GVF can be found by solving the following Euler equations:

//v 'v-(v-/,)(//+ /;)=o (4.11)

: : :

i : ! ^  .
' • • * . . . . .
. . . . .  *  ^  J  J  n  t • .

(a) (b)

Figure 4.10 -  (a): Edge map after Gaussian kernel smoothing; (b): GVF image

From Equation (4.10), we note that in homogeneous regions, the second term of both equations is 

zero. Therefore, within these regions, u and v are each determined by Laplace’s equation. Figure
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4.10 shows the calculated edge map gradient of a simulated half-circle edge, and the calculated 

edge GVF field. It is found that the edge map GVF is smoother and has a wide convergence 

range. The.extemal force in Equation (4.8) is replaced by V(xy y ) .

43.2 .2 .3  Prior shape calculation

Before incorporating the prior shape into the contour detection scheme, a set of training chin 

contours are exploited to deduce the model distribution, which is based on the mean positions of 

the points on the aligned shapes and the main variation of the points from the mean [YONG-

1998].

Suppose each shape can then be represented by a 2 N -element vector Z = .

When all chin contours o f the training image are aligned into a common coordinate frame, a cloud 

in the 2N  dimensional space is formulated. In our research, Principal Component Analysis 

(PCA) is applied to model the data, which computes the main axes o f this cloud. Based on this 

model, we can generate new examples, similar to those in the original training set, and we can 

examine new shapes to decide whether they are plausible examples.

Based on S  aligned training samples, we can calculate the mean shape and the covariance about 

the mean as:

Z = - ± Z ,  (4.12)
S  j=l

C = - Z t ( z , - z X z , - z f  . (4.13)
S  1 j=l

It can be shown that, by principal component analysis, the eigenvectors o f the covariance matrix 

C , corresponding to the largest eigenvalues describe the most significant shape model of 

variation. After computing the eigenvectors p , , and their corresponding eigenvalues A,- of C , the 

first t largest eigenvalues are chosen such that:

É  Ay ^0.98%,. A. (4.14)
M

Any shape in the training set can be approximated using the mean shape and a weighted sum of 

deviations obtained firom the first t shape models:

(4.15)
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where F = {p\\  P 2 \ ” '\ Pt)  contains t eigenvectors of the covariance matrix and

Ç = {çi,q2 , "'Ç,)  is the vector of weights, which is also the set of t shape parameters to be

optimised in Equation (4.7). Equation (4.15) allows us to generate new examples of shapes by 

varying the parameters Ç = fe i, ̂ 2  ♦ ' * ' ) •

During our research, 350 training chin contours are selected from face databases [PHUNG-2GG2]

[FACE-2GG4a] [FACE-2GG4b], which contain different face shape, pose, and expressions. Before 

aligning all chin contours, they are normalized by the distance d^ horizontally and by distance d^ 

vertically, and rotated by a  degrees to make the line between the two eye centres horizontal, as 

shown in Figure 4.11 (a). After being normalized and rotated, each contour is annotated with 46 

points, which are sampled from —90° to 90° with 4° between each two consecutive points. The 

sampled contours are listed in Figure 4.11 (b), where the mouth centre is the origin of the 

coordinates. The iterative approach in [COOTES-1995] is applied to align the sampled contours, 

as shown in Figure 4.11 (c).

I d l ■

(a) (b) (c)
Figure 4.11 -  Trained chin contour, (a): Normalized chin contour; (b): Sampled chin contours 

after normalisation; (c): Aligned chin contours

After aligning the training set, the PCA algorithm is used to calculate the model distribution. We 

found that the shape model is mainly decided by the first 4 shape parameters, which can explain 

98% of the variance of point position in the training set. Therefore, f = 4 i s  chosen and applied 

throughout the experiments.

Figure 4.12 shows the effect of varying the four shape parameters in turn between ±2.5 standard 

deviations, leaving all other parameters at zero. It is found that these models can explain global 

variation due to different face shape, pose, and expression. Less significant modes cause smaller 

and more local changes, such as in Figure 4.12 (c) and (d).
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Before updating the pose and shape parameter vector Q to best fit the newly found points, which 

are detected by the proposed active snake algorithm, the detected points should be rotated by an 

angle a , which is constant during evolution. Therefore, the pose and shape parameter vector Q

only consists o f one scale parameter s and four shape parameters We can adjust

= to achieve the objective in formula (4.7). In (4.7), the mean m,- for each

shape parameter is 0 and its variance cr,- is the eigenvector’s corresponding eigenvalues. The 

mean for scale is 1 and variance is set to 0.5.

(a) (b)

(c) (d)
Figure 4 .1 2 - Effects o f varying each o f first four chin model shape parameters in turn between 

±2.5 standard deviations, leaving all other parameters at zero, (a) Model 1; (b) Model 2; (c)

Model 3; (d) Model 4

4,4 2-D Scalable face model design

In the proposed scalable 2D model-based video coding scheme, the human face is considered as a 

special object and is modelled separately from other video objects since the human face 

undergoes both rigid and non-rigid motion. Its motion description is complex. Furthermore, the 

human face is more important and small warping error during video coding is annoying. Much 

research has been conducted on facial feature motion analysis and description [WATERS-1987]. 

This a priori information can be used for our scalable model design.
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In our research, a heuristic scalable face model is constructed, based on the muscle distribution of 

human faces in [WATERS-1987]. During scalable model design, more important nodes in the 

lower level are allocated to the face features and intersection points between different muscles in 

order to represent the facial motion more precisely and reduce the estimation and warping error 

during video coding.

In our research, a three-level scalable face model is designed which is shown in Figure 4.13. The 

design process is described as follows:

0

Figure 4.13 -  Scalable face model design, (a) layer 1; (b) layer 2; and (c) layer 3

First, eight nodes and four nodes are allocated on the eyes and mouth respectively to represent 

their movement. In addition, five nodes arc used to approximate the contour of chin. The points 

13 and 17 are found by extending the interconnecting lines between the mouth right and left 

comers towards the borders o f the face segment. Point 15 is the intersection point between the line 

formed by interconnecting the mouth upper and lower comers (point 1 0  and point 1 2 ), and the 

detected chin. These points are very important to represent the movement o f the face and are 

included in the lowest level 1 (from 1 to 17 in Figure 4.13 (a)).

For level 2, shown in Figure 4.13 (b), six additional points are introduced to represent the 

movement o f eyebrows and nose (from 18 to 23). They are useful for head motion estimation. For 

points 22 and 23, if the face size is small, they are merged at one point located in the middle of 

their positions.

For level 3, 8 additional points are allocated mainly based on the face muscle distribution 

[WATERS-1987], The scalable model of level 3 is shown in Figure 4.13 (c). The points PA and 

PB are only auxiliary points to deduce other points’ position, which are not included in the 

scalable face model. They are found by extending the interconnecting lines between the 

predetermined points of eye comers towards the borders o f the face segment. Points 25 and 26 are
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located at the middle of line segments joining mouth corners to points PA and PB. The locations 

of other points are shown in Figure 4.13 (c). This heuristic model is based on the face muscle 

distributions used to represent the face motion. A more complex model can be designed if more 

complex face expression needs to be encoded.

C'

Figure 4.14 -  Face and facial feature detection results with different skin colour
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4.5 Experimental results

4.5.1 Results for eye-mouth detection

The objective of our proposed methods in section 4.3.1 is to detect the frontal or near-frontal view 

of the face under varying lighting conditions so that the scalable face model can be designed 

automatically. Therefore, profile views of the face are not considered in the experiments. In 

section 4.3.1, some results are presented that demonstrate the performance o f the proposed 

method. More images and image sequences are used in this section to test the performance of die 

proposed methods for face and facial feature detection. Almost 300 human faces are used. These 

faces cover several racial groups and varying lighting conditions. All of the faces are localised 

correctly (accurate rate is 1 0 0 %) and eye-mouth features are extracted properly.

Some face and facial feature detection results are illustrated in Figure 4.14. The first column 

shows the original images. The second column gives the detected face patches. The third column 

shows the detected eyes, and mouth components. From the results, the proposed algorithms can 

detect the facial features correctly, irrespective of whether the face is under strong lighting or 

uneven lighting conditions.

4.5.2 Experimental results for chin detection

Extensive simulations have been conducted to evaluate the performance o f the proposed chin 

detection algorithm in section 4.3.2 and compare it to other published methods [YULLE-1992] 

[KAMP-1997a]. Figure 4.15 shows the performance of a number o f chin detection algorithms. 

The first method is the chin detection algorithm using deformable template matching. The second 

one is the initial version of our proposed method without incorporating the prior chin shape [HU- 

2003]. The third method is the proposed method including the prior chin shape.

For column (a) in Figure 4.15, deformable template matching algorithm has been applied. For 

some face shapes, such as Akiyo, the chin contour can be detected correctly. However, for most 

faces, its performance is rather poor. This is because not all chin shapes can be represented by 

parabolic curves. Column (b) lists the detection results using our method in [HU-2003] without 

considering the prior shape. Compared with those in (a), the proposed chin detection method 

achieves higher detection accuracy than deformable template matching. For example, for the 

Carphone face in row 2, chin detection is improved greatly. It is shown that the proposed method 

can detect chins with different face shapes. However, as no global information is used, the
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detected chin contour is not smoother than (a). Images in column (c) of Figure 4.15 show 

detection results generated by our proposed method including the prior shape information. As the 

prior shape o f the chin contour has been taken into account, the proposed method can achieve a 

smoother and more accurate chin contour. Figure 4.16 shows the ability of the proposed algorithm 

to cope with weak chin edges and cluttered backgrounds. Image (a) is the original image taken in 

Lab. Image (b) shows the chin detection result by using the active snake model in [RUDIA-1996].

It is found that the algorithm in [RUDIA-1996] is seriously affected by strong edges and cannot 

converge to an accurate chin position, as shown in Figure 4.16 (b). Figure 4.16 (c) shows the 

result from using the method in [HU-2003]. As the low threshold value, used in the hysteresis step 

o f the Canny edge detector, is set to 0, the weak chin edge is detected. Then, all the edge gradient 

values are set to 1 and short edges are removed. This can remove the effect of strong edges and 

noises around die chin contour. Furthermore, as deformable template matching method is used to 

detect the initial chin contour, this can improve the detection performance greatly. However, as no 

prior shape information is incorporated in the snake model, the detected chin contour is not 

smooth enough. The chin contour in Figure 4.16 (d) is detected using our proposed method 

incorporating prior shape information in the snake model. It can be seen that this method achieves 

a smoother chin contour Üian the method in [HU-2003] without taking the prior shape into 

consideration.

The perfoimance of the proposed method for coping with occlusion has also been investigated. 

Tlie main idea o f introducing the chin shape prior is to allow the detection method to cope with 

missing or misleading information. In the case o f occlusion, we expect the statistical shape prior 

to inducing a reconstruction of the shape contour that is not visible. Figure 4.17 (a) shows the 

image, in which a small part o f chin is occluded. We found that the methods in [RUDIA-1996] 

and [HU-2Q03] can not detect the chin contour correctly, as illustrated in Figure 4.17 (b) and (c). 

The detection result o f the proposed method is illustrated in Figure 4.17 (d). The chin shape is 

reconstructed according to the shape prior in the area where the occlusion occurs. However, if  the 

size o f occlusion is very large, the quality o f the detection result degrades because the information 

contained in the image may not be sufficient to correctly guide the snake model to the correct 

position
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Figure 4.15 -  Comparison of chin detection results by using different methods: Column (a): 

deformable template matching in [YULLE-1992]; Column (b): Our proposed method in [HU- 

2003] without taking the prior shape into consideration; (c): The proposed chin method in section

4.3.2 incorporating prior chin shape.
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(a ) (b)

(c) (d)

Figure 4.16 -  Chin detection results for the image with weak chin edge and cluttered background; 

(a): Original image; (b): Detection method in [RUDIA-1996]; (c): Our proposed method in [HU- 

2003] without taking the prior shape into consideration; (d): The proposed chin method in section

4.3.2 incorporating prior chin shape.

(a ) (b)
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1

kO oo
Figure 4.17 -  Chin detection results for the image with occlusion; (a): Original image; (b): 

Detection method in [RUDIA-1996]; (c): Our proposed method in [HU-2003] without taking the 

prior shape into consideration; (d): The proposed chin method in section 4.3.2 incorporating prior

chin shape

4.5.3 Results for scalable face model design and evaluation

Four head-shoulder sequences (QCIF) are used to test the performance of the designed scalable 

face model for representing face motion through video sequence. They are Carphone, Akiyo, 

Claire, and Miss am.

Before designing the scalable model of the foreground head-shoulder objects, we first segment the 

object into face object and human body object (including hair part). Then, for a human body part, 

the content-adaptive scalable model is designed, where three levels are chosen. For face objects, 

the method described in section 4.4 is used to design the scalable face models. They are combined 

to achieve three-level representation of the foreground head-shoulder object.

(a) (b) (c)

Figure 4.18 -  Scalable object models (three levels) for Carphone sequence, the number of control 

points are 63, 37, 50 for (a) Level 0, (b) Level 1, (c) Level 2, respectively
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Figure 4.18 and Figure 4.19 demonstrate the designed scalable models of head-shoulder objects 

for Carphone sequence and Akiyo sequence. TABLE 4.2 lists the number of control points in 

different levels for Carphone, Akiyo, Claire, and Miss_am sequences.

Table 4.2 -  The number of control points for different levels

Carphone Akiyo Miss am Claire

Level 0 63 54 42 40

Level 1 37 35 30 30

Level 2 50 48 40

(a) (b) (c)

Figure 4.19 -  Scalable object models (three levels) for Akiyo sequence, the number of control 

points are 54, 35, 51 for (a) Level 0, (b) Level 1, (c) Level 2, respectively

Table 4.3 -  Average warping PSNR values (dB) for different levels of representation

Average PSNR Value (dB)

Level 0 Level 1 Level 2

Claire (QCIF) 31.46 34.27 39.02

Miss am (QCIF) 33.14 36.57 40.23

Carphone (QCIF) 32.82 34.39 35.78

Akiyo (QCIF) 31.25 32.91 35.91

PSNR of Akiyo (QCIF) using 
method in [BEEK-1999] 28.64 29.27 30.56

In order to test the performance of scalable face model, for every video sequence, four frames 

(frame 2, 4, 6  and 8 ) are warped from frame 0 based on the designed scalable model. The motion 

vectors (MVs) of the control points are estimated by using our proposed method with Va - pixel 

resolution that will be discussed in section 5.3.2 of Chapter 5 in details. Then, average PSNR 

values of every level are calculated for the warped four frames (frame 2, 4, 6 , and 8 ) with
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reference to their corresponding original frames. During the PSNR calculation, only the 

intersection of the warped and original VOP alpha-plane regions is considered. TABLE 4.3 lists 

the PSNR values of Carphone, Claire, Miss_am and Akiyo sequences. Compared with the results 

in [BEEK-1999], for Akiyo sequence, the proposed method can achieve about 2-5 dB 

improvements. It shows that the designed scalable face models can represent the object motion 

more precisely than the published methods.

4,6 Conclusions

In this chapter, facial feature detection and scalable face model design techniques are investigated 

for achieving scalable 2D model-based video coding. First, a luminance-adaptive skin colour 

model is proposed, which is robust to different lighting conditions. A reliable and efficient face 

localisation and facial feature extraction scheme has also been proposed. These methods can 

achieve precise and reliable eye, and mouth detection. As the chin contour is one o f the most 

important face features for designing 2D scalable face models, it has been intensively studied 

during our research. An efficient chin detection scheme has been presented to estimate the chin 

contour of the human face. After face localization and mouth comer detection, deformable 

template matching method is used to detect the rough chin position. This is in turn used as the 

initialization of the active snake model for contour refinement. In order to improve its 

performance, prior chin shape is trained and incorporated into the active snake model. During 

external energy calculation for snake model, Canny edge detector is first applied to detect weak 

chin edges by choosing proper parameters. Then, the GVF of a binary edge map is used as the 

external force in order to improve the convergence of the active snake model and increase 

robustness in the case o f weak chin edges. For face detection, the proposed algorithm in section

4.3.1 is robust to different skin colour and luminance. For chin detection, some comparisons with 

other published detection methods have been presented to show the robustness o f the proposed 

method in section 4.3.2 to weak chin edges and partial occlusion.

After extracting the facial features, a heuristic scalable face model is designed based on face 

muscular distributions and the detected facial features. In order to evaluate the designed scalable 

face model, a novel motion estimation scheme is proposed which can estimate the model motion 

precisely although some points are allocated on the textureless region, such as the part of human 

face. A thorough experimental study has been conducted to show the efficiency of the proposed 

method in Section 4.4 for scalable face model design. Experimental results show that the designed 

scalable model can represent the face motion more precisely than previously published techniques 

and the proposed algorithms can achieve automatic facial model design.
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Chapter 5

Scalable Object Modelling and Model 

Compression

MPEG-4 is an object-based multimedia compression standard which allows encoding different 

audio-visual objects (AVO’s) separately [MPBG4-2001]. These AVO’s are decoded and then 

composited at the user terminal according to a transmitted scene description script. For example, 

each video object is modelled by its shape (includes 2D and 3D), motion and texture (colour). For 

shape modelling of video object, 2D mesh modelling can be considered as a projection of a 3D 

polygon mesh model onto the image plane by perspective projection. Moreover, implicit in 2D 

object mesh models is a compact representation of the shape o f each VOP. This is given by the 

polygonal boundary of the mesh, which is named as 2D vertex-based shape description. 2D mesh 

representation o f video objects enables the following functions:

1 . Video object compression

Mesh model may improve coding efficiency visually. It provides better motion compensation 

than translational-block models, and results in fewer blocking artefacts at low bit rates.

2. Video object manipulation

It includes augmented reality, spatio-temporal interpolation and synthetic-object 

transfiguration/animation. For example, it can enable the replacement of a natural video 

object in a video clip by another video object.

3. Content-based video indexing

It can provide accurate infoimation that can be used to reti'ieve visual objects with specific 

motion. It can also provide vertex-based object shape representation, which is more efficient
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than the bitmap representation used for shape-based object retrieval in MPEG-7 [MPEG7- 

2002].

In 2-D model-based video coding, the information about model (such as object shape and content- 

adaptive object mesh model) should be included in the encoded bitstream and sent to the decoder, 

which is the difference between the model-based / object-based coding scheme and the 

conventional frame-based coding schemes. Commonly, the cost of model compression is high, 

especially at low bit rate environment. On the other hand, object model, especially object contour, 

contains important and sensitive visual information to human eyes. Object shape should be 

represented precisely, encoded efficiently, and transmitted robustly. A large number of techniques 

have been proposed in order to transmit the object contour efficiently [CONNELL-1997] 

[GERKIN-1997] [CHUNG-2000] [JONG-2000].

For 2D mesh modelling of video objects, it is commonly possible to model the shape and motion 

in a unified framework. However, during our research, object shape and interior model are treated 

separately. That is, we separate the vertices of the object mesh model into two parts: vertices for 

shape and vertices for interior object (or vertices o f the interior object), and different 

representation and compression schemes are proposed for them. The reasons for separating the 

vertices of the object mesh model into two parts are:

• Object shape contains more important and visually sensitive information. More 

protection is required when sending it over enor-prone channels.

• Object shape information has other important functionalities, such as video object index 

and retrieval. Above separation can facilitate fuifher manipulation;

The objective of this Chapter is to investigate scalable object modelling and model compression. 

In section 5.1, the well known lossy and lossless shape representation schemes are reviewed, 

followed by the discussion o f main model design and coding techniques that include content- 

adaptive mesh model design, block-based shape coding, contour-based shape coding, and scalable 

shape compression, hi section 5.2, scalable shape representation and compression (both intra and 

inter) are investigated. Both intra- and predictive scalable shape-coding algorithms have been 

proposed duiing our investigation to improve the coding efficiency of object shape. Section 5.3 

gives a detailed description of the proposed schemes for object mesh design (interior object) and 

compression. For the vertices of the interior object, a coarse-to-fine strategy is used to allocate the 

control points due to its simple implementation at no loss of accuracy. The most important 

proposal on this is trying to make the mesh edge conform to the object boundary, hi this way, the 

warping error can be reduced and object motion can be estimated precisely [NAKAYA-1994].
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Extensive experiments have been conducted and some results are illustrated in section 5.4, 

followed by conclusions of this Chapter.

5.1 Overview

The emergence of new multimedia applications, such as searching, indexing and manipulation of 

visual information at the semantic object level, requires further research on video representation 

and coding. In past decades, much research has been conducted on content-adaptive mesh design, 

shape representation and compression, and some are standardized in MPEG-4 [MPEG4-2001].

There are two kinds of mesh applied to represent the object motion: regular mesh and content- 

adaptive mesh. As regular meshes can be setup at both the encoder and decoder without geometry 

overhead, it is sufficient to transmit only node motion vectors. However, regular meshes cannot 

adapt the mesh structui’e based on the content o f the video object to represent the motion more 

accurately. Content-adaptive meshes can overcome this drawback with the cost o f transmitting 

initial mesh geometry [NAKAYA-1994] [WANG-1994a] [HUANG-1994] [ECKERT-1997]. 

Several techniques have been discussed on how to design content-adaptive object meshes 

[ALTUNB-1997], which are reviewed in section 5.1.1.

In recent years, significant research has been performed on shape coding in the framework of 

MPEG-4 standardization activities. Shape also plays an important role in image database search 

and retrieval applications, which are addressed by MPEG-7 standard [MPEG7-2002]. A large 

number of shape coding algorithms have been proposed [BRADY-1997] [ETOH-1997] 

[YAMAG-1997] [CONNELL-1997] [GERKIN-1997] [CHUNG-2000]. These shape coding 

algorithms can be classified into two categories: block-based and contour-based

[KATSAGGELOS-1998], which are reviewed in section 5.1.3 and 5.1.4 respectively.

Furthermore, scalable shape representation and compression is an important requirement of new 

applications. For example, one of the key requirements of MPEG-7 applications is to perform 

very fast shape filtering and browsing through rough shape reconstruction, but also has the ability 

to perfoim full resolution shape rendering. Scalable shape representation and compression lend 

themselves naturally to these requirements. Scalable shape compression also facilitates shape 

ti'ansmission over eiTor-prone channels or the channels with variable bandwidth. Many scalable 

shape-coding methods have also been proposed [QIAN-1997] [JORDAN-1998] [MELNIKOV- 

2000a] [MELNIKOV-2000b], which will be reviewed in detail in Section 5.1.4.
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5.1.1 Content-adaptive mesh model design and coding

Y. Nakaya et al [NAKAYA-1994] proposed a hexagonal matching procedure for motion 

compensation based on a unifoim mesh. Uniform meshes are suitable for “motion compensation 

by redesign”, that is, a new uniform mesh is overlaid on each frame k  and motion vectors of the 

object model are estimated from fi’ame k  to /c-1  for motion compensation. Unfortunately, 

uniform meshes are often inadequate for representing the motion near object boundaries, where a 

patch may contain two or more different motions. This problem may be addiessed by splitting 

these patches with more than one motion into smaller patches [HUANG-1994], resulting in a 

hierarchical mesh. Infoimation about this splitting must be transmitted as overhead.

A more fundamental approach to overcome the problems of uniform mesh elements is to design a 

content-adaptive mesh model. Wang et al [WANG-1994a] proposed an optimization framework 

for motion compensation based on an active mesh that adapts to scene content. However, this 

content-adaptive mesh is not suitable for motion compensation by redesign because transmission 

of all node locations at each frame constitutes an excessive amount of overhead. Fuilhermore, 

these mesh models enforce connectivity of the stincture eveiywhere, which imposes a global 

smoothness constraint on the 2-D motion field and is unsuitable for motion compensation across 

the motion and occlusion boundaries.

Y. Altunbasak et al [ALTUNB-1997] proposed an occlusion-adaptive mesh model to solve this 

problem. Occlusion regions are classified as Background to Be Covered (BTBC) and Uncovered 

Background (UB). No node points are allowed in the BTBC regions and the meshes within the 

failure regions are redefined for subsequent hacking. The success of foiward tracking is closely 

related to how well it can detect occlusion and model failure regions together with the motion 

estimation near their boundaries. In motion compensation by forward tracking, positions of all 

nodes need to be hansmitted only for selected key frames. For other frames, it is sufficient to 

transmit the boundaries of the BTBC regions and the locations of the newly added nodes in the 

mesh model.

In order to reduce the warping eiTors occumng over object borders, M. Eckert, et al [ECKERT- 

1997], proposed an object-based motion compensation scheme. In this scheme, all border nodes 

are assigned to the adjacent regions and every region is triangulated individually. The single 

object meshes are then connected to a complete mesh over the whole image, which covers all 

region contours with triangular edges. During motion estimation, the mesh has to be split object 

by object at the points where motion discontinuities occur. The particular objects are transformed
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individually. Uncovered parts can be detected during the process o f motion compensation. In 

paper [IZQUIER-1999], E. Izquierdo proposed a 3-D modeling method for arbitiary objects based 

on geometric surface conformity. The proposed technique uses feature points and relevant edges 

in the images as the node and edges of an initial 2-D wire giid. Starting from this initial 2-D 

model, the 3-D wireframe is generated by fitting the 2-D model to a previously recovered depth 

map o f the object. The 3-D wireframe is defoirned and updated fr om frame to frame according to 

the motion of the chosen nodes.

In recent years, hierarchical representation of 2-D dynamic meshes has attracted attention. It 

provides rendering at various levels of detail. It not only allows scalable transmission of the object 

geometry and motion information, but also enables improved tracking performance. Detailed 

algorithms on hierarchical content-adaptive model design and update are discussed in [BEEK-

1999] [CELASUM-2000]. In the design algorithm of paper [BEEK-1999], a finely detailed 2-D 

mesh is designed for the initial video object plane. Then, a hierarchical representation is 

constructed by simplifying this mesh from fine to coarse levels. During the finely detailed 2-D 

mesh design, nodes are placed at salient intensity comer points on the boundary and interior of the 

video object plane. The initial mesh topology is constructed using constrained Delaunay 

triangulation o f the node points, where the boundary edge segments serve as constraints in order 

to confine the resulting triangles within the boundaiy polygon. During the simplification of the 

fine mesh, an independent set of nodes from the finer level is removed to obtain the coarser level. 

It is naturally desirable to eliminate less “important” nodes first in the mesh simplification 

process, such that essential mesh features of the mesh geometry are retained. Some complex 

image-, shape-, and motion-based criteria are proposed in [BEEK-1999] [CELASUM-2000] for 

determining the importance of a node adaptively. Dynamic programming is used to optimize the 

mesh. These methods share the disadvantages of high computational complexity. Furthermore, the 

edge of triangles does not guarantee to conform to the object boundary and interior edges.

5.1.2 Fourier descriptor of object shape

hi the Fourier descriptor of object contoui*, the object contour is considered as a set of ordered 

points defined on the complex plane [SALE-1996]. The coordinates of a closed contour can be 

seen as a periodic complex sequence. Fourier descriptors are first calculated as the Fourier series 

coefficients of this complex sequence; then the Fourier descriptors are encoded. In order to get an 

accurate reconstructed contour, the bitrate needed to accurately encode these Fourier descriptors is 

usually high. Therefore, the coding efficiency of the Fourier descriptors approach is not enough 

for high quality contour coding.
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5.1.3 Block-based shape coding -  CAE

In block-based shape coding, object shape is represented by a binary image mask and context- 

based arithmetic encoding (CAE) [BRADY-1997] is used to coding the mask. CAE is one o f the 

most successful methods for binaiy image coding and is applied in JBIG standard [JBIG-1993], It 

is also applied successfully in binaiy shape coding, and is a block-based shape coding scheme. In 

CAE [BRADY-1997] [ETOH-1997] [YAMAG-1997], it is assumed that a high degree o f local 

correlation exists in the shape image. Each pixel is encoded according to a conditional probability 

distribution that is conditional upon its context -  the value of pixels in a local neighbourhood. The 

neighbourhood’s shape and size are represented by a template, and this context is used to access a 

table containing probability distributions. The table is created by a training procedure prior to 

coding. It also can be adapted during the coding procedure in the case of the adaptive CAE. The 

widely used templates for the Intra- and Inter-mode coding are shown in Figure 5.1.
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(a) (b)

Figure 5.1 -  Templates used in context-based arithmetic coding, (a) Template for intra mode; (b)

Template for inter mode

The main feature of block-based shape coding is its superior coding efficiency, while bearing a 

relatively low complexity. It is also well adapted for low delay applications. For video coding 

applications, it has been extended to achieve block-based coding and temporal prediction, as 

described in [BRADY-1997]. The CAE has been adopted and well integrated into the cunent 

MPEG-4 standard. However, the block size conversion in the MPEG-4 shape-coding scheme, 

which applies the CAE technique, shows a visually annoying staircase effect [BRADY-1997].

5.1.4 Contour-based shape coding

Object shape can also be represented by its contours. Contour-based shape coding schemes 

perfonn compression along the outlines of a segmented object, so that each contour can be
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endowed with dedicated semantics to describe the object in a contour-by-contour manner. That is 

o f interest in applications where a high level, semantic representation is needed. In the past 

decades, many contour-based shape-coding methods have been proposed [FREEMAN-1961] 

[CONNELL-1997] [GERKIN-1997] [CHUNG-2000] [KANEKO-1985] [LU-1991] [LEE-1999] 

[CHO-1999] [JONG-2000]. These methods can be further classified into lossless coding 

[FREEMAN-1961] [KANEKO-1985] [LU-1991] and lossy coding schemes [CONNELL-1997] 

[GERKIN-1997] [CHUNG-2000] [CHO-1999] [JONG-2000].

For lossless contour coding, chain coding is one o f the most frequently used methods 

[FREEMAN-1961] [KANEKO-1985] [LU-1991]. In the chain coding method, the contour 

information is encoded pixel by pixel. From the starting point, the directional vectors between 

successive contour pixels are encoded. Since Freeman’s chain code was introduced in 1961 

[FREEMAN-1961], improvements in chain code representation have yielded several simple 

lossless contour compression methods [KANEKO-1985] [LU-1991]. In method [LU-1991], Lu 

and Dunham developed chain coding schemes using higher-order Markov models combined with 

arithmetic coding, which offer 50% and 25% coding gains over Freeman’s chain codes and 

differential chain coding, respectively. The codes are close to the theoretical upper bound on the 

compression ratio for lossless differential chain coding. Lossless schemes, however, are not 

sufficiently flexible to allow the control of shape bit-rate in order to negotiate service quality with 

available bandwidth. Therefore, lossy shape coding is needed.

In order to achieve lossy shape coding schemes, the object contour should be approximated by an 

ordered set of vertices properly selected from a given contour. Only the positions of the selected 

vertices need to be compressed. Therefore, the lossy shape coding methods mainly consist of 

three steps: vertex selection, vertex encoding, and approximation reconstruction. There are many 

vertex selection algorithms for computer vision and pattern recognition [ANSARI-1991] 

[DUNHAM-1986]. The iterated refinement method (IRM) [GERKIN-1997] has been widely used 

because it can be easily implemented and makes contiol feasible. Recently, optimized vertex 

selection methods [KATSAGGELOS-1998] [SCHUSTER-1998] have been proposed. They give 

optimal vertices in the rate-distortion sense but also result in high computational complexity.

For better coding efficiency, various vertex encoding schemes have been proposed. In 

[CONNELL-1997], O ’Connell presented an object-adaptive vertex-encoding (OAVE) scheme, 

which adjusts the dynamic range of the relative addresses for each contour and use an octant 

representation for each vertex address. This idea extends chain coding for lossy shape coding. 

Experimental results show that OAVE combined with adaptive arithmetic coding for encoding a 

composite relative address can achieve better compression performance than CAE [CONNELL-
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1996]. In 2000, Jae-won Chung infioduced a new binary shape coder for high coding efficiency, 

in which ID vertex detection, vertex reordering and initial vertex encoding methods are included 

[CHUNG-2000],

In [LEE-1999], Lee, etc., proposed a baseline-based shape coding method for both lossless and 

lossy contour coding. In this method, a baseline is first chosen for a given shape image such that 

the projection of the shape onto the x-axis is the longest. Then, the distance from each contour 

point to this baseline is extracted as well as the turning points. The distance data are encoded by 

an entropy coder. In the lossy mode, the distance data are subsampled first and then are entropy 

encoded. On the decoder size, the reconstmcted data are interpolated to get the whole contour.

In [KATSAGGELOS-1998] and [SCHUSTER-1998], a framework for the rate-distortion 

operationally optimal encoding of shape information in the intra mode is proposed. First order 

(polygons) and higher order (i.e. splines) approximation techniques are adopted to represent the 

boundaiy, and the confrol points of these curves are encoded to achieve the R-D optimised result. 

For these tecliniques, one o f the disadvantages is their computational complexity during R-D 

optimisation for vertex selection.

Wang, etc., recently proposed an efficient rate-distortion optimal shape-coding scheme utilising a 

skeleton-based decomposition [WANG-2003]. The approach decouples the shape information 

into independent signal data sets; the skeleton and the boundary distance from the skeleton. The 

major benefit of this approach is that it allows for a flexible tradeoff between approximation ennr 

and bit budget. Experimental results in this paper demonstrate that the proposed algorithms result 

in a significant improvement in rate-distortion efficiency with respect to other rate-distoition 

optimised shape encoders. However, this method has the same disadvantage as those in 

[KATSAGGELOS-1998] [SCHUSTER-1998] due to its high computational complexity during R- 

D optimisation.

Temporal infoimation has also been exploited in many shape-coding methods, such as [GERKIN-

1997] [GU-1995] [CHO-1999] [MELNIKOV-1999] [JONG-2000], to achieve higher coding 

efficiency. Gerkin demonstrated an improved vertex-based coding scheme using a vertex-list- 

update predictive coding algorithm [GERKIN-1997]. As the vertex prediction performance is 

dependent on vertex selection, and the size of the list update information is significant for a large 

number of vertices, the performance of this method is not very satisfying. Gu [GU-1995] 

proposed the predictive shape-coding technique, exploiting the temporal coiTelation. hi this 

technique, only contours yielding relatively large motion-failuie (MF) regions are encoded for 

transmission, in which the lossless chain coding technique is employed for encoding the contour.
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However, the MF regions are distributed in a sparse and isolated manner, requiring large 

overheads to represent each isolated contour using chain codes. Sung Ho Cho, et. al [CHO-1999] 

proposed a technique based on the segment-based chain-coding scheme. First, a two-stage motion 

compensation technique is present in order to cope with complex motion. Furthermore, by 

defining the error band, the method can be applied for lossy encoding, by which the bits required 

for the contours can be adjusted according to the channel condition. Jong II Kim, et. al [JONG-

2000], introduced a generalized predictive shape coding (GPSC) scheme, which improves the 

performance of the method in [CHO-1999] by inti'oducing a 1-D reference index-based coding 

scheme.

Although the methods in [CHO-1999] and [JONG-2000] can improve the contour coding 

efficiency by incorporating the temporal information during coding, they cannot achieve scalable 

shape coding that is desirable for multimedia networks and devices with different bandwidths and 

available decoding powers. Furthermore, during motion estimation, the contour motion is 

assumed as translational motion. This assumption does not work well when there is zooming 

and/or rotation. For non-rigid object motion, different motion patterns exist for different contour 

segments. It is difficult to use one motion model to describe them.

5.1,5 Scalable shape coding

In multimedia networks, devices with different bandwidths and available decoding powers are 

interconnected. Bitstream scalability is desirable, so that simple decoding of the first bits results in 

a coarse shape approximation that may be further refined. Scalable representation and coding is 

also desirable for new flmctionalities such as indexing and retrieval of the shape information. 

Many scalable shape-coding methods have been published in the past decades [CONNELL-1996] 

[QIAN-1997] [JORDAN-1998] [MELNIKOV-2000a] [MELNIKOV-2000b]. These schemes can 

be considered as extensions o f block-based shape coding and contour-based shape coding.

For block-based shape coding techniques, in order to achieve scalability, the binary map is first 

decomposed into several layers of different resolution. The basic layer, that is the layer with the 

lowest resolution, is coded using the classical non-scalable technique. The enhancement layers are 

then encoded in a similar fashion but using a different template [CONNELL-1996] [QIAN-1997].

For contoui'-based shape coding, the object contour should be represented progressively in order 

to achieve scalable coding. First, a coarse polygon approximation is built. The resulting vertices 

corresponding to salient points along the contour are encoded by any existing vertex-based coding
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method so that the decoder can rapidly access them for fast browsing/retrieval. Complementary 

lossless representation for final rendering is achieved by successively transmitting the polygonal 

approximation refinements. The insertion orders of the refinement vertices, as well as their 

positions, are encoded relative to the coarser polygon edges.

Several methods have been published for progiessive representation of object contours [GERKIN-

1997] [JORDAN-1998] [MELNIKOV-2000a] [MELNIKOV-2000b]. The most popular method is 

the iterated refinement method (IRM) in [GERKIN-1997] due to its simplicity. However, this 

method can only achieve sub-optimal vertex selection. In order to improve its performance, some 

hybrid schemes have been proposed by using the information of contour geometry [JORDAN-

1998], vertex adjustment method [CHUNG-2000], and rate-distortion optimization scheme 

[MELNIKOV-2000a] [MELNIKOV-2000b].

Although much research has focused on scalable shape coding in recent years, the experimental 

results show that these methods cannot achieve higher compression efficiency for (near-) lossless 

shape coding and they lack optimality in both intra and inter modes of the operation 

[KATSAGGELOS-1998]. Therefore, further research is still necessary for scalable shape coding.

5.2 Proposal for scalable shape representation and coding

In our research, scalable vertex-based shape coding schemes (both intia- and inter-coding) are 

studied to achieve higher coding efficiency. For scalable vertex-based shape coding, the efforts 

include:

• First, an optimal vertex selection scheme is proposed, which can achieve less 

approximation vertex number as shown by the results in section 5.4.2.1. Furthermore, 

the most important vertices, which correspond to the salient feature of object shape, are 

included in the coarser layers to facilitate shape manipulations, such as shape retrieval.

• Second, an efficient vertex-based intra-encoding scheme is proposed. The infoimation 

of the tiansniitted coarser layers is exploited to improve coding efficiency of current 

layer.

Third, a scalable predictive shape-coding scheme is presented. In this scheme, object 

contours are effectively compressed with the aid of temporal information. The proposed
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intra and predictive coding schemes offer the content-based shape description together 

with the quality scalable representation,

5.2.1 Scalable shape representation

In recent years, many vertex selection algorithms have been proposed, such as [GERKIN-1997] 

[JORDAN-1998] [MELNIKOV-2000b]. The iterative refinement method (IRM) [GERKIN-1997] 

has been widely used as it can be easily implemented. However, this method cannot find the 

optimal position o f the approximating vertices. In paper [JORDAN-1998], a digital polygon 

approximation was presented, taking the intrinsic image grid quantisation into consideration. 

Recently, an R-D optimised vertex selection method [MELNIKOV-2000b] has been proposed. 

However, this method has high computational complexity.

In our research, a new vertex selection scheme is proposed to approximate an object contour 

progressively. During approximation, the vertices are classified into several layers according to 

the selected error bands. During our experiments, 4 layers are used for QCIF sequences. Layer 0, 

1, 2, and 3 have the coiTesponding desired eiTor band = 4 , d^^^ = 2 , d^^^ =1, = 0

respectively. These selections are based on the research results in [JORDAN-1998], which show 

that:

• It does not seem useful to encode more than 4 layers;

• Lossy shape coding should be limited to small distortions for video coding.

The detailed vertex-selection algorithm can be summarised as follows:

Curvature scale space (CSS) image [MOKHT-1992] has been exploited during vertex 

selection for layer 0. The algorithm for CSS image calculation will be discussed in 

Section 5.2.3.1.

Figure 5.2 shows a video object contour and its traced CSS image. It is found that the - 

traced CSS image carries the most important feature of object contours and can detect 

these salient features easily. The vertices of layer 0 should include the salient points of 

the object contour, which can feature contour efficiently. These vertices should be first 

encoded and decoded, as they are very important for shape retrieving and matching. 

However, for contours with small curvature, the method based on curvature caimot
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guarantee that the contour approximation satisfies the predefined error band. Therefore, 

the IRM method is used after curvature-based vertex selection is employed.

For other refinement layers, IRM, together with a novel merging scheme, has been 

exploited. Each approximating polygon edge of the coarser layers is recursively split by 

introducing a new vertex at the contour point with the largest distance, until the desired 

accuracy d < is reached. The intrinsic image grid quantisation is taken into 

account during the approximation.

(a) (b)

(c) (d) (e)

Figure 5.2 -  The correspondence between (b) the traced CSS image and (c) the salient features 

( a  > 80) for original contour (a), (d) and (e) are the salient features for cr > 40 and <r > 30 .

In order to reduce the approximation vertices and encoding bit-rate, a new merging algorithm is 

proposed and summarized as follows:

/-I
Suppose, at layer i e {l,2,3}, the contour has been divided into segments. Along

k=0

every segment, if the vertex number of layer i is 2  or more, these vertices will be 

evaluated. If the vertex is removed and the polygon approximation still satisfies the 

error condition, remove it. Otherwise, keep it.
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If t̂ niax = 0, and, for every s e g m e n t , Ae vertex number of layer i is «y ^  2 , 

arrange these vertices along the contour in array p t \ ] , including two terminals. Then: 

For (k=0; k</Zy -1  ; k++) {

For (kk= pt [A:] ; kk< pt [A +1] ; kk++) {

If (kk == pt [A:] )

Else

If we can find mj < nj -  k points to approximate segment k k , p 2 , 

recode the points and number;

If we can find w , < « -  A: -1  points to approximate segment

kk, p j  , recode the point positions and number;

}

}
If (no such point sets are found) {No merge is needed;}

Else {Replace the vertices of layer i with the point set with the smallest number.}

Figure 5.3 illustrates an example for the lossless approximation, where (a) is achieved by the 

methods published in [GERKIN-1997] and [JORDAN-1998] (both achieve the same results); and

(b) is achieved by the proposed method. For the approximation of the contour segment between 

XI  and X 2 ,  four points are required by using the method [GERKIN-1997] and [JORDAN-

1998]. While using our proposed method, only one point is chosen. More experimental results in 

Section 5.4 show that our proposed method requires fewer vertices to approximate the object 

contour, especially for (near-) lossless approximation.

Eli# y i
m

a VI

% #X2
I■

(a) (b)

Figure 5.3 -  Comparison of different lossless approximation methods, (a) Approximation result 

using IRM method only [GERKIN-1997]; (b) Approximation result using our proposed method
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5.2.2 Scalable intra-shape coding

Figure 5.4 shows the proposed scalable intra-shape coding scheme. For scalable vertex-based 

shape coding, there are two kinds of information to be encoded: contour configuration and 

contour location. Contour configuration is represented by an ordered set of vertices that can be 

used by the decoder to correctly produce the ordered list of vertices. The contour location is 

represented by the coordinates {x,y)  of the vertices. In the proposed intia-shape coding scheme, 

the scalable vertex encoding consists of:

• The encoding of the vertices of layer 0;

• The encoding of vertex connectivity of the refinement layers;

The position encoding of the refinement layers;

Layer 1 encoder

Layer 0 encoder

Assembler

Progressive

shape
representation

Figure 5.4 -  Scheme illustiation of scalable intra-shape coding scheme 

5.2.2.1 Encoding of layer 0

As there are no coarser approximation layers for layer 0, the corresponding vertices have to be 

encoded directly. The encoding of layer 0 consists o f two parts:

• The encoding of the initial vertex;

• The encoding of other vertices;

In our proposed method, a vertex-reordering step is conducted before the initial vertex encoding. 

As we know, the relative distance between the initial vertex Vq and the last vertex does not

need to be coded. In the object-adaptive vertex-based shape-encoding (OAVE) scheme described 

in [CONNELL-1997], the bit assignment during encoding is dynamically determined by the
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maximum relative distance. Therefore, the reordering of vertices can reduce the number of 

encoded bits.

After the initial vertex is decided, two prediction models have been proposed to encode its 

position:

• Relative to the origin of the video object plane (VOP) boundary box;

• Relative to the origins of other contours;

During experiments, we found that, if the number of contours of a VOP is high, (b) is more

efficient than (a).

In the proposed scheme, two encoding methods have been used to encode the non-initial vertices:

•  OAVE encoding scheme in [CONNELL-1997];

It provides a compact representation when the vertices are closely spaced. Experimental 

results in [CHUNG-2000] show that OAVE algorithm, combined with adaptive 

arithmetic coding for encoding a composite relative addiess, shows good coding 

performance. However, the OAVE algorithm may be not efficient when the vertices are 

widely spaced, which usually occuis for the coarser approximating layers [CONNELL-

1997].

• Absolute addressing [CHO-1996];

It can provide a compact representation when an object’s vertices are widely spaced (as 

in a large object approximated by few vertices). It is inefficient when the vertices are 

closely spaced.

For above two methods, the method generating shorter bit stieam is selected. During the encoding 

of the vertices of layer 0 , the coding model selection information is also included in the encoded 

bit stream and transmitted to the decoder.

S.2.2.2 Vertex-connectivity encoding of refinement layers

For scalable shape coding, the connectivity and the number of child vertices along the coarser 

polygon edges should be encoded and transmitted to the decoder. In our research, a 2-D symbol
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{a , B) is defined to indicate the positions, where new vertices will be added. A is to define the 

number of edges (or vertices) before a vertex should be added. B is defined as the number of 

vertices to be added along this approximation edge. For each approximation layer (except layer 

0), 2-D symbols are formed and encoding using variable-length coder (VLC).

The following example illustrates the symbol construction. Assume that we plan to encode the 

vertices along the object contour in Figure 5.5. First, 10 vertices in layer 0 are encoded and the 

vertex 5 is chosen as the starting point. For layer 1 and layer 2, the 2-D reference symbols are 

formed as follows:

(4.1),(1,1), (2,1), (2,2)

(1.1), (3,1), (3,4), (2,1), (1,1), (1,2), (2,1), (2,2)

(Layer 1) 

(Layer 2)

L e v e l  0

L e v e l  2

Figure 5.5 -  Illustration of vertex-connectivity coding

PniM bttty di*ibuBOfi d  (A.B] L ay*  1 and Lay«r 2 PraÉMtdtfy 3

(a) (b)

Figure 5.6 -  Statistical distribution of (A, B) pairs for (a) Layers 1, 2, and (b) Layer 3

During encoding of these symbols, a variable length coder (VLC) has been used. As the number 

of vertices for every layer has been included in the layer header, the end-of-layer (EOL) 

information is not needed.

109



Chapter 5. Scalable object modelling and model compression

Fifty video objects from QCIF sequences have been used to study the statistics of symbols, which 

are shown in Figure 5.6. It is found that layers 1 and layer 2 have similar statistics, but are 

different from these of layer 3. Therefore, two VLC tables are designed. From the data shown in 

Figure 5.6, it is also found that, for layer 1 and layer 2 , B = \  for almost 75% of (A, B) symbols; 

and for layer 3,A = 1 for almost 75% of (A, B) symbols, During vertex position encoding, this has 

been used to improve the encoding efficiency.

S.2.2.3 Vertex-position encoding of refinement layers

For the vertex position encoding of refinement layers, an improved OAVE encoding algorithm in 

[CONNELL-1997] has been proposed. In this algorithm, the information from the already 

encoded coarser layers and pre-defined error band of the current layer is exploited for high 

encoding efficiency. The encoding process of the current layer includes:

• Determine and encode the dynamic range indicators for x  and y  components of the 

current layer;

• Encode the octant numbers of the vertices;

• Encode the major and minor components;

Determine and encode the dynamic range indicators fo r  x and y  components

The ability to adapt the vertex representation for all of an object’s vertices is provided by 

indicating the dynamic range of the relative locations [CONNELL-1997]. The dynamic range of 

the relative locations of the object’s vertices of cuiTent layer can be determined and indicated in 

the compressed bitstream by:

• Calculating the relative locations of the vertices iîj-= F,--  F,_| for i = l,***,V -l 

(F  = {Fo,F[,-*',F/v_i} represents the ordered set of N  vertex locations approximating 

the object contour), after selecting the initial vertex;

• Determining the x _màx_magniture and y _ max_magMz/wrg , the maximum absolute

values of the % and y  components of the relative location i?,-. In the proposed method,

only the segments containing the newly inserted vertices are used during the 

determination.
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• Selecting and encoding indicators in d ic a to rand indicatory based on the Table 1 in 

[CONNELL-1997]. The selected indicators are then encoded using a 3-bit FLC.

Encode the octant numbers

In the proposed method, the determinant of octants of current layer is different from that in 

[CONNELL-1997]. Figure 5.7 shows the determination of octant number using: (a) the method in 

[CONNELL-1997]; and (b) the proposed method for Case 1 that only one vertex is allocated

between the segment X yX ^ . Figure 5.7 (c) shows the octant number determination for Case 2

that two or more vertices are allocated between the segment X ^X 2 . The main difference of our 

proposed method with the method in [CONNELL-1997] is the defined area for octant 0, 3, 4, and 

7. The proposed method can reduce the dynamic range of x  and/or y  components, which 

depends on the octant number. For example, in Figure 5.7 (a), the dynamic range of y  component 

for octant 0 is y _ max_ magniture . In Figure 5.7 (b), its dynamic range of y  component is

(d  ̂ Vz , which is commonly smaller than y  _ max_ magniture . The same conclusion can

be drawn for the case in Figure 5.7 (c).

According to the vertex number, n j , o f current layer along the approximation edge, two octant 

determination methods are proposed:

• Case 7: If My = 1, its octant is decided from Figure 5.7 (b). In Figure 5.7 (b), X\ and 

% 2  belong to the coarser layers. Now, if one point 7  ̂ belongs to current layer, it must 

be located in the regions between /]q and /j \ or between Î q and l2 \ .

• Case 2\ If My ^  2 , their octants are decided by Figure 5.7 (c). These vertices are located 

in the region between l^  and /21 in Figure 5.7 (c). For example, in Figure 5.6 (c), the

octant of 7q is based on the relative position between and X ^X 2 . The octant of

Yfj is based on the relative position between Xj7^ and 77, , instead of the relative

position between 7„7  ̂ and 7 7 , ^ 2  •

The regions coiTesponding to octant from 0 to 7 are separated by /, and , as indicated in Figure 

5.7 (b) and (c) from Rq to respectively. After deciding the octants, they are encoded by using 

conditional differential chain coding (CDCC). The differential octant is obtained by the difference
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between neighbouring octant values. For example, in Figure 5.7 (b), the differential octant of 

is decided by the octant of and the octant of X .̂ In Figure 5.7 (c), the differential octant of 

is decided by the octant of Y  ̂ and the octant of .

(a)

(b)

— X

(c)
Figure 5.7 -  Octant number determination: (a) using the method in [CONNELL-1997]; (b) using 

the proposed method for Case 1; (c) using the proposed method for Case 2
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Encode the major and minor component

The vertex number along the approximation edges also determines the encoding methods for the 

vertex position.

X2

(a )

1,1

10

'20

(b)

1,1

01

'21

Figure 5.8 -  Encoding vertex position for refinement layers for (a): Case 1 with one vertex

locating along the segment ; (b): Case 2 with two or more vertices locating along the

segment X^X^

•  Case 1: If = I and the octant of this vertex is 0, 3, 4, or 7, its x component is 

encoded by using indicator^ of the current layer. Its y  component is decided by value 

d^ in Figure 5.8 (a) and is encoded by VLC coder. If its octant is 1,2, 5, or 6 , such as
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Zi in Figure 5.8 (a), its y  component is decided by the distance d^ =jZ,Zgj, which is . 

no larger than indicatory of current layer, and encoded using VLC codec. Its ;c 

component is encoded using [log ̂  (min k  + 0 1 1 )1  bits, where can

be deduced from value d  =jZ,Zoj and the information from and .

•  Case 2: If rty ^  2 , as shown in Figure 5.8 (b), the first vertex is encoded by using the

same method as described above for Case 7, except that different VLC table is used. 

For other vertices, the metiiod in [CONNELL-1997] is used except that the error band 

is also used to decide the number of bits. For example, for in Figure 5.8 (b), its x  

component is encoded using \\og 2 i}ftdicator^J\ bits. Its y  can be deduced from d^ 

(encoded using variable length coder), and . For Yjj in Figure 5.8 (b), its x

component can be deduced from the x  component of and the line 7̂ 7̂  (encoded 

using [log2 bits). Its y  component is deduced from <7̂ (encoded using

variable length coder), and 7 ,̂.

For every refinement layer, two VLC tables are designed for the above two cases. For Case 7, the 

discrete set of d is {2,3,4,5,6 }, {l,2,3}, {o,l} for layers 1, 2, 3, respectively. For Case 2, the 

discrete set of d  is {o,1,2,3,4,5,6}, {0,1,2,3}, {0,l} for layers 1,2, 3, respectively. For layers 1 and

2, about 75% of total vertices satisfy Case 7, the value d can be encoded using 1-2 bits. For layer

3, the value d  can also be encoded using 1 bit as the discrete set of d  is {0,l}. Therefore, the 

compression performance can be improved especially for (near-) lossless shape coding. More 

experimental results are presented in Section 5.4.

5.2.3 Scalable predictive shape coding

The coding efficiency achieved by the intra-shape coding scheme cannot satisfy the requirement 

of low bitrate video coding, even though current state-of-the-art compression ratio is high. Since a 

contour sequence has very high correlation in the temporal domain, as shown in Figure 5.9 for 

Foreman sequence, motion estimation and compensation can be used to achieve further 

eompression. The contour in the current frame can be predicted from the contour obtained in the 

previous frame. Only the contour segment that cannot be predicted from previous frame must be 

encoded by using the intra-shape coding technique. Compared with intra-shape coding, this 

predictive coding method can reduce the bit rate of the shape coding drastically.
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Figure 5.9 -  Example of object contour sequence (12 consecutive frames from the Foreman

Sequence)

Several motion compensated contour coding schemes have been proposed [CHO-1999] [GU- 

1995] [KIM-2000]. In these contour motion estimation schemes, the object contour is assumed to 

undergo a translational motion. A global motion vector is searched according to the number of 

matched contour points between two contours. The whole contour is segmented into global 

motion success segments and global motion failure segments, as shown in Figure 5.10. The global 

motion success segment is the segment that can be correctly predicted by the global motion 

vector. Otherwise, it is a global motion failure segment. The global motion failure segment is 

encoded by chain coding method. Only the segment length of the global motion success segment 

is required for the transmission. It can be reconstructed from the contour in the previous frame 

and the global motion vector. In [CHO-1999] and [KIM-2000], a second stage motion, local 

motion vectors are searched for each global motion failure segment. The global motion failure 

segment is further split into local motion success and local motion failure segments. The local 

motion success segment can be represented by its length and the local motion vector.

The main assumption of the above contour motion estimation/compensation schemes is that the 

global motion of the object contour is translational. When there is more complex motion such as 

zoom and/or rotation, the contour cannot be well compensated. In Figure 5.11, the object contours
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in two neighbouring frames are overlapped. We can find that different motion patterns exit for 

different contour segments. It is difficult to use one motion model to describe them.

V 4 r  V3

(a) Lossless motion estimation; (b) Lossy motion estimation

Figure 5.10 -  Matched and mismatched segments, and matched (or mismatched) start-end points 

after motion estimation by traversing in a counter-clockwise direction [CHO-1999].

f I
(a) (b) (c)

Figure 5.11 -  Illustration of contour motion pattern for different segments; (a) and (b) are 

contours in different fiâmes, (c) shows the overlapping of (a) and (b)

In [LU-2002], an affine global motion compensation scheme is investigated. The following six- 

parameter affine motion model is used as a global motion model.

|x = an  ̂+ aiV+ 03
[y = a^x + a^y-\-a^

(5.1)

where x  and y  are the coordinates of contour points of the current fi-ame. x  and y  are the 

coordinates of contour points in the previous frame.

The vector [ a , , 0 2 , 0 3 , 0 4 , 0 5 , 0 g] is estimated according to two available contours. First, the

comer points of each contour are detected according to their curvature values. Then, the comer 

points are matched by a comer matching process. The motion vectors are calculated from the 

matched comer pairs. The affine parameters are estimated by a Least Median Square (LMS)
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algorithm, and then are encoded. One of the problems with this method is the coding of affine 

parameters. As the affine parameters are floating point, 10-12 bits are required to represent each 

parameter. Therefore, for most sequences, compression ratios are not high. The other problem is 

the contour comer matching. Sometimes, it cannot be matched accurately due to the shape 

distortion. The parameter used to represent the shape feature is not robust enough. Furthermore, 

this method cannot provide scalable shape coding.

In our research, a novel layer-adaptive scalable predictive coding scheme is proposed, which can 

achieve higher compression efficiency than state-of-the-art shape coding methods due to the use 

of temporal prediction. In order to achieve scalable predictive coding, it is necessary to represent 

and estimate the contour motion hierarchically. In our proposed scheme, the contour motions in 

level i are first estimated. They are predicted from the MVs of the previously transmitted levels 

and/or the encoded MVs of the current level. Contour matching in CSS image domain is applied 

to find the correspondence of two contours during contour motion estimation, which can achieve 

more accurate motion estimation of object contours. Figure 5.12 shows the diagram of scalable 

predictive shape coding scheme. The novelties of this method are twofold:

Layer 0

Object Layer 1

Contour
Layer 2

Layer 1 decoder

ME

Layered Irira-ooding

MV coding and intra- 
coding for MC-faüfid 

segments

Assembler

Figure 5.12 -  Diagram of scalable predictive shape coding

First, we propose an efficient contour motion estimation scheme, which is based on the 

curvature information of an object contour and is used to predict the motion vectors of 

vertices in the coarser level;

Second, a scalable encoding scheme is proposed, in which the motion of each contour is 

estimated hierarchically. A multi-model encoding scheme is included to improve the 

compression efficiency.
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The proposed scheme consists of two steps: contour motion estimation and scalable predictive 

shape coding, which will be discussed in detail in the following sections.

5.2.3.1 Contour motion estimation

Instead of using the comer matching method for contour motion estimation described in [LU- 

2002], in our proposed scheme, CSS images and curvature information are used in contour 

matching for contour motion estimation. CSS images are currently used for shape indexing and 

retrieving, and have been selected as shape descriptors for the MPEG-7 standard [MPEG7-2002].

5.2.3.1.1 CSS image calculation

The CSS image is computed by first convolving a path-based parametric representation of the 

contour with a Gaussian function, as the standard deviation of the Gaussian varies from a small to 

a large value. Next, curvature is computed on each smoothed contour. As a result, curvature zero- 

crossing points and curvature extremes can be recovered and mapped to the CSS image in which 

the horizontal axis represents the arc length parameter on the original contour, and the vertical 

axis represents the standard deviation of the Gaussian filter. The CSS image has the properties 

that it is invariant under rotation, uniform scaling, and translation of tiie contour.

Given a planar curve

r  = {(r(w), y (w)) 1 w e [O, l]} (5.2)

where w is the normalized arc length parameter, and its evolved version is defined by:

= {(%(«, O'), y(n, (r))| M E [O, l]} (5.3)

where

X(u,  O ' )  = x ( m )  ® g{u, cr)
Y{u, cr)= y(u) 0  g{u, cr) '

g{u, cr) denotes a Gaussian of width cr defined by:

(5.5)
cr-yjlTT

The curvature of can be calculated by:

(5.6)
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Figure 5.13 -  Two object contours from Motr dhtr sequence, their extremes and zero crossing of 

contour curvature image with the scale cr . (a) Original object contours and their motion; (b) The 

extremes curve of curvature across the scale a  ; (c) is the length of extremes curve after tracking 

process; (d) is the zero crossing of curvature across the scale cr .
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Figure 5.14 -  Two object contours from Foreman sequence, their extremes and zero crossing of 

contour curvature image with the scale cr . (a) Original object contours and their motion; (b) The 

extremes curve of curvature across the scale cr ; (c) is the length of extremes curve after tracking 

process; (d) is the zero crossing of curvature across the scale (7  .
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Using equation (5.6), the main feature points can be detected at any scale. By finding the local 

curvature extremes, we are able to identify where sharp changes in the contour direction occur. 

The curvature extremes of lower resolutions also exist in the higher resolutions, and they have 

similar positions. In our research, all of the curvature extremes are defined as the Curvature Scale 

Space (CSS) image of F .

Figure 5.13 shows the two object contours in the Motr dhtr sequence, their extremes and zero 

crossing of contour curvature image with the scale c r . It can be found that the extremes and zero 

crossing of object contour curvature can identify important geometric properties of contour and 

two object contours have large similarity in CSS images.

Figure 5.14 shows the object contours and their CSS images for Foreman sequence. The same 

conclusions can be achieved. Therefore, in fire proposed algorithm, the extremes of the contour 

curvature will be used to find the corresponding features of two object contours.

5.2.5.1.2 Contour matching o f CSS image

Figure 5.13 and Figure 5.14 show the CSS images of object contours of two consecutive fi-ames. 

It can be found that the matching of two object contours in CSS images is much simpler than 

matching object contour directly. As the two contours have the same direction (counter-clockwise 

in our experiments), the matching of two CSS images just tries to find the optimal horizontal shift 

of the maxima in one o f the CSS images that would yield the best possible overlap with the 

maxima of the other CSS image. The basic idea behind the contour matching based on CSS image 

is to obtain a coarse-level match using the structural features of the input curves. Such a match 

can be found quickly and reliably since at the high levels of CSS image, there are relatively few 

features to be matched. The actual features used for matching are the maxima of the curvature 

local extremes contours since they are the most significant points of these contours: the CSS 

coordinates of a maximum convey information on both the location and the scale of the 

corresponding contour whereas the body o f the contour is, in general, similar in shape to those of 

other contours. Furthermore, the maxima are isolated point features and therefore solving the 

feature coiTesponding problems is relatively simple.

So the task of the matching algorithm is to find the correct correspondence between two sets of 

maxima: one from each CSS image. The allowed transformation from one set to fiie other is mere 

horizontal translation. The translation parameter is computed when the first image curve CSS 

maximum is mapped to the first model curve CSS maximum and used to map each o f the 

remaining image curve CSS maxima to the model curve CSS. The corresponding model curve
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CSS maximum should then be the closest model curve CSS maximum. Many candidatures may 

have to be considered since the correspondence between the first pair of maxima can be made in 

possibly many ways. This matching problem can be solved using a best-first matching strategy 

which will gradually expand a number o f candidatures matched in parallel until the lowest-cost 

complete match is found. The contour-matching algorithm [MOKHT-2003] (in Chapter 2) has 

been employed to achieve contour matching in CSS image. The contour-matching algorithm can 

be summarised as follows:

1. Calculate the CSS images of object contours in the current frame and previous frame, 

which are named as image CSS and model CSS respectively. Normalise these coordinates 

so that the horizontal coordinate u varies in the range [0,1]. Segment the object contours 

into several segments by using CSS images.

2. Create a number o f nodes corresponding to the possible match o f the contour segment of 

current frame with the highest-scale maximum o f the image CSS and the contour 

segments o f previous frame, in which the maximum has a a  coordinate close (within 

90%) to that of the highest image CSS maximum. Initialise the cost of each node to zero.

3. For each node created in the previous step, compute a CSS shift parameter a  using 

Ufji = U i+ a ,  where u„j is the horizontal coordinate of the model CSS maximum and

is the horizontal coordinate of the image curve CSS maximum.

4. Create two lists for each node created in step 2. The first list will contain the image CSS 

maxima matched within that node at any point during program execution and the second 

list will contain the corresponding mode CSS maxima. Initialise the first list of each node 

to contain the highest-scale image CSS maximum. Initialise the second list of each node 

to contain the corresponding mode CSS maximum determined in step 2.

5. Expand each node created in step 2 one step using the procedure described in the next 

step.

6 . To expand the node, select the highest-scale, image CSS maximum (which is not in its 

first list) and apply that node’s CSS shift parameter computed in step 3 to map that 

maximum to the model CSS image. Locate the nearest model Curve CSS maximum 

(which is no in the node’s second list). The cost of match is defined as the straight line 

distance in the model CSS image between the two maxima. If there are more image CSS
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maxima left, define cost of match as the height of ftie highest model curve CSS maximum 

not in the node s second lost. Likewise, if there are no more model CSS maxima left, 

define cost of match as fiie height of the selected image CSS maximum. Add the match 

cost to the node cost. Update the two lists associated with the node.

7. Select the lowest-cost node. If  there are no more mode or image CSS maxima that remain 

unmatched within that node, then return that node as the lowest-cost node. Otherwise go 

to step 6  and expand the lowest-cost node.

Please refer to [MOKHT-2003] for the detailed description of this algorithm. Once the nodes’ 

correspondence are decided, the contour motion can be represented and estimated by the motion 

of feature points of the object contour with salient features. In fact, based on these motion vectors, 

the global motion parameters can be estimated after selecting the proper motion model. If a 

translation model is used, this method is the same as that in [KIM-2000]. If  an affine motion 

model is used, the proposed method is the same as that in [LU-2002]. The complexity o f our 

proposed method is comparable with the contour motion estimation method in [LU-2002].

5.2.3.2 Scalable predictive shape coding

The proposed scalable predictive shape-coding scheme used different encoding schemes for different 

approximation levels. Figure 5.12 shows the diagram o f scalable predictive shape coding scheme. 

For each level except the finest one, the motion vectors of vertices are estimated and the contour 

o f the current frame is predicted by motion compensation. For the motion failure segments, where 

the approximation error band is larger than the predefined threshold, new vertices are inserted to 

make it satisfy the error band. Their coordinates are intracoded and are transmitted to the decoder. 

As an adaptive update scheme is proposed and used in the codec, the order of the maintained and 

rejected vertices need not be coded and transmitted to the decoder. This is different from the 
method in [CONNELL-1997].

The predictive scalable shape-coding algorithm can be described as follows:

• For the vertices of level 0 in the previous frame, which have the maximal curvature, their 

corresponding point in the CSS of current frame is estimated based on the contour matching 

algorithm in Section 5.2.3.1. For other vertices of level 0, which cannot be selected using 

curvature information in CSS image, they try to make the approximated contour locate in 

the pre-defined error band and their motion vectors are estimated trying to minimise the 

approximation eiTor. This process is illustrated in Figure 5.15. Image (a) shows the object
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contour of the previous frame, in which three vertices belonging to level 0 are indicated as 

A , B , and C . The vertex A and B locate on the high curvature position and their 

corresponding positions are estimated, indicated by A' and B' as shown in image (b). In 

order to find the corresponding vertex of C , the following two steps are conducted:

1. First, the search region S is decided along the contour of the current frame as 

shown in Figure 5.15 (c). This is mainly to reduce the number of possible search 

positions and computational complexity;

2. Then, in this region, find the corresponding position C' of vertex C , which has 

the minimal prediction error of the contour segment between A' and B ' , as 

shown in image (d);

A ' ;

(b)

(c) (d)

Figure 5.15 -  Motion estimation of the vertex without locating on high curvature position, 

(a) Object contour of the previous frame; (b) Object contour of current frame; (c) Search 

region along the contour of current frame for the vertex C in the previous frame (indicated 

by green colour); (d) the final estimated position C' (indicated by green ‘x’), which tries to 

minimise the contour approximation error.

After estimating the motion vectors, these motion vectors are differentially encoded by 

using a variable length-coding scheme (VLC). In our experiments, adaptive arithmetic 

coder is used [W ITTEN-1987].
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For the motion failure segments, where the contour approximation cannot satisfy the 

predefined error band; new vertices are inserted based on the CSS image and the maximal 

error distance. The coordinates of these vertices are intra-coded by using the method 

described in Section 5.2.2, and transm itted to the decoder after the motion vectors.

If the vertices in levels 1 and 2 in the previous frame are located on the salient points with 

high curvature, their motion vectors are estimated by using the method described in Section 

5.2.3.1. Otherwise, the motion vectors are estimated by using the method illustrated in 

Figure 5.15, which tries to m inim ise the approximation error of object contour.

During motion vectors encoding, the motion vectors are first predicted from the MVs of the 

coarser levels and/or the encoded MVs of the current level, as shown in Figure 5.16. In this 

Figure, vertices A, B, C and D belong to the coarser levels. Vertex 1, 2, 3, and 4 belong to 

the current level. Their MVs are estimated as follows:

• The MV of vertex 1 is estimated from the MVs of vertex A and B:

• The MV of vertex 2 is estimated from the MVs of vertex B and C;

• The MV of vertex 3 is estimated from the MVs of vertex 2 and C;

• The MV of vertex 4 is estimated from the MVs of vertex C and D.

Figure 5.16 -  illustration on predicting motion vectors from the coarser levels and/or

current levels.

The prediction error of MV is encoded using a VLC scheme. However, some video objects 

have very complicated shapes, requiring more vertices in levels 1 and 2 to represent them. 

Here, the MV estimation and differential coding method is not efficient enough as more 

vertices are needed to represent them, which was also discussed in [HOTT-1989].
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Therefore, in our proposed scheme, the multi-model selection method is used in these two 

levels, which includes two coding methods:

• MV estimation/differential coding method;

• Scalable intra-shape coding method;

The method, which generates the shorter bitstream, is selected and encoded, together with 

the encoded bitstream.

For level 3, as there are more approximation vertices, the size of the list update information 

is significant. Furthermore, it is difficult to estimate the correspondence of two contour 

segments based on the curvature information, which provides a lossless approximation of 

the contour. The performance o f the MC-based method is not satisfactory [HOTT-1989]. 

Therefore, in our proposed method, the scalable intra-encoding scheme described in Section 

5,2.2 is used. That is, the vertices are first selected progressively to satisfy the error band 

condition. Then, they are intra-encoded by using the method in Section 5.2.2. Therefore, for 

the vertices of level 3, no motion estimation is conducted, as the motion estimation of 

vertices is less efficient for shape coding.

Intensive experiments have been conducted to test the proposed scalable predictive shape-coding 

scheme, which are illustrated in section 5.4 in detail.

5.3 Proposal for scalable mesh model design and coding

5.3.1 Scalable mesh model design

Model design is vital for the performance of 2-D scalable model-based video coding. The model 

should represent the movement o f the object precisely. Furthermore, in order to overcome the 

aperture problem commonly encountered during motion estimation, the node points of model 

should be allocated on the positions that contain sufficient grey-level variation, such as comers. 

At the same time, based on the results in [NAKAYA-1994], the area of the patches that contain the 

motion discontinuities should be as small as possible. In this way, the number of pixels with 

erroneous motion estimation can be reduced. The best way to achieve this is to let the edge of the 

mesh triangles conform to the object boundary.

In our proposed algorithm, the physical characters (such as edge and texture) and motion 

character of the object surface have been taken into account, similar to the method in [IZQUIER-
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1999]. Before 2-D model construction, a set of feature points and edge lines from the intensity 

image are first extracted. Then an initial constrained 2-D mesh can be constructed to reduce the 

triangular patch area with motion discontinuities. The difference from the proposed method to 

those, such as [ALTUNB-1997], [BEEK-1999] and [CELASUM-2000], is that object surface 

characteristics are employed as the mesh constraints in order to achieve accurate motion 

modeling.

Before scalable mesh model design, we assume that object shape has been approximated and 

transmitted to the decoder progressively and losslessly by using the methods in Section 5.3. The 

proposed algorithm can be described as follows:

1. The object is analysed and segmented into texture and motion homogeneous patches.

Certain objects in the video sequence commonly undergo both rigid and non-rigid motion. 

Therefore, the interior node should be allocated to represent the movement precisely, 

especially for non-rigid motion. In order to achieve this, the object is analysed and 

interior edges are first detected since the errors during warping are more likely to occur at 

the interior edges due to the non-rigid object motion. At the same time, in order to 

estimate the motion o f object precisely, the node should be located on the features with 

high texture content [SHI-1994].

2. The nodes of the coarsest layer (layer 0) are allocated on the intersection points and the 

interior edge lines, trying to approximate the patch contours achieved in section 1 .

To generate linear approximations for each interior edge, the method in [DUNHAM- 

1986] is applied. That is, a symmetric narrow band S  along the curve of concern is first 

defined. Then the shortest polygonal path lying in the strip defined by the band is then 

chosen as linear approximation for the curve. To avoid the creation of very small triangles 

during the generation o f the initial mesh, sides of the polygonal path whose length does 

not exceed a predefined threshold are removed. The resulting lines are designed to form 

the constrained mesh vertices of the coarsest layer. Please note that, some of the nodes in 

this layer may be located on the object contour because the interior texture information is 

not considered during the object contour approximation. But it is far from the control 

points in layer 0  of object contour.
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3. More nodes are allocated on the object interior to obtain meshes with nodes regularly 

distributed over the object area.

First, the video object is split into rectangular blocks of moderate size. For each block that 

does not intersect an edge and the layer 0  nodes (both object contour and interior), the 

point that is most clearly distinguished from its neighbour is also considered as a 

candidature for the mesh nodes. SUSAN comer detector [SMITH-1997] is used to detect 

the comer and estimate the gradient. By adjusting the size of rectangular blocks, different 

approximation layers can be generated.

In our research, a three-level scalable object model for each object is used. The number of points 

in every level is decided by the size o f object, texture and motion of the frame. On completion of 

node point, allocation, constrained Delaunay triangulation algorithm is used to build the mesh 

structure of the object model [BERG-1997]. As the node points in level 0 are located on the patch 

contours, they are considered as the constraints to guarantee the edges of mesh triangles conform 

to the contour of motion discontinuity.

5.3.2 Model evaluation algorithm

In order to evaluate the performance o f the designed model, a hierarchical motion estimation 

scheme has been proposed to estimate the motion vectors of node points. The PSNR after warping 

is calculated and used as the criterion of model performance. The evaluation algorithm includes 

the following steps:

1 Foreword / backward motion estimation of video object

In order to estimate the motion of a video object, a number of points are allocated in the 

interior of object. These points may be different from those used to represent object 

model and have good features for tracking [SHI-1994]. Then, both forward and backward 

motion vectors of these points between frame /( jc ,f - l)  and frame /(x ,/)  are estimated 

using Shi-Tomasi feature tracking algorithm in [SHI-1994]. That is, the forward motion 

vector of the i th point location F) in frame / - I ,  moves to location F) in frame t . Then 

the backward motion vector at the location F} in frame t maps back to F," in frame / - I .

2 Reliability evaluation
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The motion “reliability” is estimated based on both forward and background motion 

vectors. The “reliability” is evaluated by the Equation (3.3) in Chapter 3. The smaller the

difference between Vf and , the more reliable the motion vector of i th node. The 

nodes whose reliability is smaller than a threshold (0.3 is chosen in our experiments) are 

not considered during model vertices prediction.

3 MV prediction of node points of scalable object model

After estimating the motion vectors of these points, the motion vectors of node points 

representing the object model are predicted fi-om their m nearest surrounding motion 

vectors, m is chosen as 6  in our experiments. The weighted least squares (WLS) 

estimation in [ROUSS-1987] is used to determine the affine parameters of motion for the 

control points. During estimation, each motion vector is weighed according to its 

“reliability”.

4 MV refinement by hexagonal matching algorithm

As the estimated MVs using feature tracking algorithm has high precision, the MVs are 

then refined to 1/4-pixel resolution with lower warping error. During refinement, 

hexagonal matching algorithm in [NAKAYA-1994] is exploited which is efficient for 

mesh-based motion estimation and can also keep the mesh structure during estimation.

Some results are listed in Section 5.4.1 for the performance evaluation of the designed scalable 

object model.

5.3.3 Scalable mesh model compression

Scalable mesh model compression includes both intra-coding (coding of node position) and inter­

coding (coding of node motion vectors). In this section, our research will just focus on intra­

coding. Scalable coding of node motion vectors will be discussed in detail in Chapter 7 of this 

thesis.

Before model compression, we assume that the mesh topology remains fixed during mesh 

tracking. The mesh can be constructed using Delaunay triangulation so that the mesh triangular 

topology need not be coded. The Delaunay triangulation [BERG-1997] is used as a pre-agreed 

triangulation method, such that the mesh can be reconstructed at the receiver.
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The model compression method in [BEEK-1999] has been extended to achieve scalable mesh 

model compression, which consists o f three steps:

1 Unique ordering o f the node points;

Compression of node-point locations assumes a unique ordering of the node points. This 

ordering is computed on the original finest level and is defined as follows. First, the top 

left node is defined to be the first in the node ordering. The node is considered as top left 

with m inimums + y , assuming that the origin of the local coordinate system is at the top 

left. If there is more than one node with the same value o fx  + y , use the y  value to break 

ties. Other interior node points are ordered using a greedy nearest neighbour strategy, 

starting from the first node. The nearest neighbour strategy identifies the node that has not 

already been ordered and has minimum \x -  | + |y -  y„_̂  | , where (x„_i, y„_̂  ) represents

the coordinates of the previously ordered node. If necessary, use the y  and x  values to 

break ties for the case when there is more than one such node. This continues until the 

entire set of node points is ordered. The difference of the ordering process from that in 

[BEEK-1999] is that the points along the object boundary are not included during the 

ordering process.

2 Encoding of base-layer mesh geometry

Each node point location of base layer is coded differentially using the coordinates of the 

previously processed node as predictors. That is, the difference between the x-coordinates 

of the present node and the previous node is coded using a variable-length coder, as is the 

difference between the y-coordinates of the present node and the previous node. The total 

number of node points of base-layer is encoded before coding the actual locations. Thus it 

is able to reconstruct the mesh of this layer. The decoder finally applies constrained 

Delaunay triangulation to obtain the topology of the base layer mesh.

3 Encoding of enhancement-layer mesh geometry

The basic predictive schemes discussed above are also used to code the locations and 

motion vectors of nodes in the enhancement layers. However, coding of the detail 

information at successively finer levels is performed with respect to already encoded 

information of the current or coarser levels.
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In our study, a scalable method is used to encode the ordering information in such a way that it 

can be reconstructed layer by layer. The encoding process for ordering information is illustrated in 

Figure 5.17.

□ lay e r 1

A lay e r 2

O lay e r 3n2 n3

(a) (b)

Figure 5.17 -  Illustration of scalable model compression, (a) Ordering of model vertices; (b) The

layer representation of the object model.

In Figure 5.17 (a), the ordering of node points of partial object model is illustrated. First, the 

boundary nodes are visited in a counter clockwise direction. Then the interior nodes are visited 

according to proximity, i.e., the next node is always the nearest node that has not been visited. In 

Figure 5.17 (b), two layers are used for object boundary and three layers for object interior. The 

list of layer labels of nodes in the predefined order illustrated in (a) is as follows: 1 1 2 1 1 2 1 2 1  

2 3 2 1 3 2 1. This string can be encoded directly by using variable length coding although it is not 

a scalable coding. In order to achieve scalable coding, the string is arranged as:

• First Layer: 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1

• Second Layer: 1 1 1 1 0  1 0 1

• Third Layer: 1 1

(* no need to transmit the third layer as the number o f layers has been transmitted to the decoder 

as header information)

To encode the above strings, Run-length coding (RLC) is used to represent the above string as (a

(b): a is the number o f 1; b is  the number o f 0)\

First Layer: 

Second Layer: 

Third Layer:

2 (1) 2(1) 1(1) 1(1) 

0 (2) 1(2) 1(0)

0(1) 1(1) 1(0)
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5.4 Experimental results

5.4.1 Results on scalable model design and compression

In Chapter 4, some scalable object models for head-shoulder sequences, such as Claire, Miss am, 

Carphone, and Akiyo sequences, have been illustrated and their performance has been evaluated. 

Figure 4.17 and Figure 4.18 show the designed scalable model for Carphone and Akiyo video 

objects. Table 4.3 gives the average PSNR values o f Carphone, Claire, Miss am and Akiyo 

sequence. Compared with the results in [BEEK-1999], for the Akiyo sequence, it shows that the 

proposed method can achieve about 2-5 dB improvements and represent the object motion 

precisely.

For non-face video objects, extensive experiments have been conducted to evaluate the efficiency 

o f the proposed modelling algorithm. Figure 5.18 shows the designed scalable object model for 

the Motr dhtr video sequence.

(a) (b) (d)

Figure 5.18 -  Scalable object models for Motr dhtr sequence (considered as a non-face video 

object). Image (a) is the model o f level 0; (b) is the model o f level 1; (c) is the model o f level 2. In 

(a), (b) and (c), the node points in level 0 o f object contour are included.

The performance o f the model design scheme is tested by the model evaluation algorithm in 

Section 5.3.2. The motion vectors o f node points have 'A pixel resolutions and frames 2, 4, 6 and 8 

are selected during the test, which is the same as that in Chapter 4. Table 5.1 gives the average 

PSNR values o f non-Carphone, Claire, Miss_am and Akiyo sequence. It shows that good warping 

performance can be achieved using the proposed scalable modelling algorithm .

Some compression results for scalable models are listed in Table 5.2. These scalable object 

models are for Carphone, Motr_dhtr, Claire, and Akiyo objects. From the results, it is shown that 

only 1-2 kbits is required to encode each object model progressively, which only occupy a small
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portion of the total bits for coding the whole sequence. In fact, further improvement is possible 

through the optimisation of ordering and prediction of node points as in [TOUMA-1998] to 

reduce the bits of node positions.

Table 5.1 -  Average warping PSNR values (dB) of four sequences for different levels

Average PSNR Value (dB)

Level 0 Level 1 Level 2
Motr dhtr (QCIF) 24.08 28.98 32.94

Coastguard (CIF) 24.04 27.41 31.79

Container (CIF) 28.71 30.64 33.28

News (CIF) 29.55 32.93 35.41

Table 5.2 -  Scalable model compression results by using the proposed scheme

Test Sequences

Carphone Motr dhtr Akiyo Claire
Node number 150 130 140 1 1 0

Proposed
method

Node Position (bit) 1672 1315 1369 1086

Ordering
information
(bit (points))

Layer 0 97 (63) 55 (90) 81 (54) 6 6  (40)

Layer 1 73 (37) 6 6  (75) 62 (35) 62 (30)

Layer 2 38 (50) 40 (55) 41 (51) 35 (40)

Total (bit) 1880 1476 1553 1249

5.4.2 Results on scalable shape representation and coding

5.4.2.1 Results on scalable shape representation

Intensive experiments have been conducted to test the performance o f the proposed algorithm. 

Several video objects are selected, such as Coastguard, Kids, News, Weather sequences. Their 

binary shape images are illustrated in Figure 5.19. After scalable shape approximation using the 

proposed approximation scheme, the required average number vertices under different error 

criteria for different video objects are listed in Figure 5.20. Compared with the methods in 

[GERKIN-1997] and [JORDAN-1998], the proposed method can achieve up to 30-80% and 20- 

30% respectively of the total number of vertices for lossless reconstruction of test video objects. 

The proposed method can also achieve less number of approximating vertices at the coarser layers 

although reduction is not significant. However, the positions of the allocated vertices are different 

from those generated by the methods in [GERKIN-1997] and [JORDAN-1998.
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(c) (d)
Figure 5.18 -  Binary shape image of (a) Coastguard, (b) Kids, (c) News and (d) Weather

sequence.

S.4.2.2 Results on scalable intra-shape coding scheme

We test the performance o f the proposed intra-shape coding algorithm by coding several widely 

used MPEG-4 shape sequences: “Weather” and “Kids” sequences. We evaluate our algorithm by 

comparing with the CAE technique because the CAE technique has already been employed by the 

MPEG-4, and other vertex-based shape coding methods. Of the various ways to measure 

distortion, we utilise the following additive distortion metric per frame, which has also been used 

in the MPEG-4 standardised process to evaluate the performance o f competing algorithms:

D„ =
Number o f  Pixels in Error (5.7)
Number o f Interior Pixels 

where a pixel is said to be in error if it belongs to the interior of the original object and the 

exterior of the approximating object, or vise-versa.

A number of experiments have been conducted to evaluate the performance of the proposed intra­

shape encoding scheme. The first experiment is to compare the proposed method with those 

existing shape encoding schemes in [CONNELL-1997] and [JORDAN-1998], which also belong 

to vertex-based shape coding scheme. The corresponding results are illustrated in Figure 5.21. It is 

shown that the proposed scalable intra-shape coding scheme can provide 25-60% gain in bit rate 

over the scalable encoding method in [JORDAN-1998]. For some sequences, it can achieve 5- 

10% gain over conventional non-scalable vertex-based coding [CONNELL-1997] in bit rate.
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Figure 5.20 -  Comparison of different vertex-selection methods for contour approximation, (a) 

Coastguard; (b) Kids; (c) News; and (d) Weather sequence

Another experiment is conducted to compare the proposed method with non-scalable vertex-based 

shape coding method [CHUNG-2000] and CAE in MPEG-4 [MPEG4-2001], in terms of R-D 

performance. The results are shown in Figure 5.22. From this figure, it is found that the proposed 

method has better R-D performance than these shape-coding methods. The R-D perfoimance of 

the proposed method is also comparable to the recently developed non-scalable shape coding 

method in [WANG-2003] and scalable shape coding algorithm in [MELNIKOV-2000a] by 

compared the RD curves in Figure 5.22 with those reported results (see Fig. 17 and Fig.20 in 

[WANG-2003] for “Kids” and “Weather” sequence respectively, and see Figure 3 in 

[MELNIKOV-2000a] for “Kids” sequences). One of the most important characteristics of our 

proposed method is that it can achieve scalable shape coding. The R-D performance of our 

proposed algorithm shown in Figure 5.22 is achieved by decoding the same shape bitstream. 

Table 5.3 lists the average bit usage per fi-ame o f four layers for the proposed intra-shape coding 

scheme. All of the shape sequences are with the frame rate o f 10 frames per second (fps). The 

success of the proposed scalable intra-shape coding scheme is the efficient shape representation 

scheme and the layer-adaptive intra-coding scheme.
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Table 5.3 Average bit usage per frame for the proposed scalable intra-shape coding scheme

Layer 0 Layer 1 Layer 2 Layer 3 (lossless)

Weather 197 208 257 403

Kids 415 532 733 1471

News 290 385 496 927

Forman 261 344 471 676

Average Bifs Average BIfs
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Figure 5,21 -  Comparison of the performance (bits/layer) of intra-shape coding methods 

corresponding to: (a) Weather, (b) Kids sequence.
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Figure 5.22 -  Comparison of R-D performance of the proposed intra-shape coding method with

other coding scheme for (a) Weather, (b) Kids sequence.

5.4.2.3 Results on scalable predictive shape coding scheme

The performance of the proposed scalable predictive shape coding algorithm has been tested using 

the “Weather” and “Kids” sequences. The same distortion metric as Equation (5.7) is used to 

measure the shape coding distortion. The performance is also compared with the generalised
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predictive shape-coding scheme (GPSC) in [KIM-2000] and CAE in MPEG-4. Figure 5.23 

presents the bit distortion curves of the proposed algorithm for (a) Weather and (b) Kids 

sequence. It shows that our proposed algorithm can achieve better R-D performance than that of 

CAE and GPSC techniques. Table 5.4 shows the average bit usage per frame for the proposed 

scalable predictive shape coding scheme.

The success of our proposed predictive shape coding is due to the adaptive coding for different 

layers and the accurate motion estimation by using CSS image matching of the object contour.

Table 5.4 Avera çe bit usage per frame for the proposed scalable predictive shape coding scheme

Layer 0 Layer 1 Layer 2 Layer 3 (lossless)

Weather 24 52 153 325

Kids 241 359 548 1281

News 51 8 6 277 569

Forman 83 157 2 0 1 406

Average bits
1800 r

Average bits 
4 0 0 # CAE

Vertex-based scheme 
Proposed method
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Vertex-barsed scheme 
Proposed method
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Figure 5.23 -  Comparison of R-D performance o f the proposed scalable predictive shape coding 

method with those of other coding scheme for (a) Weather and (b) Kids sequence.

5.5 Conclusions

In this chapter, an extensive study has been conducted for scalable object modelling and model 

compression. For 2-D mesh modelling and representation, the vertices of object mesh model are 

separated into two parts: vertices for shape and vertices for object motion (or vertices of the 

interior object). Different compression schemes are proposed for these two parts. This is because 

shape information sometimes has other functionalities, such as video object index and retrieval.
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After reviewing the main techniques on mesh model design and shape coding, some algorithms 

have been proposed and described for scalable shape representation, scalable intra-shape coding 

and scalable inter-shape coding. Experimental results show that the proposed algorithms have 

better performance than the existing published methods. After discussing the scalable shape 

coding, scalable object modelling and model compression techniques are investigated. A model 

design algorithm has been proposed, in which the physical and motion characteristics of the object 

surface have been taken into aceount. After that, scalable mesh models are compressed efficiently. 

Extensive study and experiments have been conducted to test the proposed algorithms. For 

scalable object modeling, it is shown that the designed scalable object models can represent the 

object motion more precisely than the method in [BEEK-1999]. The designed object model can be 

compressed by using 1 - 2  kbits.

Scalable shape representation and coding are also investigated and discussed in this Chapter. In 

both shape representation and coding, curvature scale space (CSS) image is employed to detect 

the salient feature of object contour and to estimate the contour motion. For scalable shape 

representation, the proposed method can achieve up to 30-80% and 20-30% of the total number of 

vertices for lossless reconstruction of test video objects while compared with the methods in 

[GERKIN-1997] and [JORDAN-1998].

The proposed scalable shape coding method can achieve great improvement of compression 

performance by exploiting the geometrical knowledge of coarser levels and statistical entropy 

coding, although more computation is needed. For example, the proposed intra-coding scheme 

can provide 25-60% gain in bit rate over the scalable encoding method in [JORDAN-1998]. For 

some sequences, it can achieve 5-10% gain over conventional non-scalable vertex-based coding 

[CONNELL-1997] in bit rate. Experimental results also demonstrate that the proposed scalable 

intra-shape coding algorithm results in a significant improvement in rate-distortion efficiency with 

respect to other existing scalable and non-scalable shape coding algorithms.

Experimental results also show that the proposed scalable predictive shape-coding scheme can 

achieve better R-D perfoimance than an existing predictive shape coding method and CAE 

method of MPEG-4. The proposed scalable shape coding method can achieve great improvement 

in compression performance by exploiting the geometrical knowledge of coarser levels, statistical 

entropy coding, and novel contour motion estimation scheme. Most importantly, the proposed 

scheme can achieve scalable shape coding, which facilitates error protection and error 

concealment of shape information. It also facilitates achieving other functions, such as 

progressive shape retrieval.
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Chapter 6

Scalable Texture Intra-coding of Video 

Objects

6.1 Introduction

In recent years, as MPEG-4 enables object-based video coding for the coding and representation 

of semantic units o f image and video content called “video objects” [MPEG4-2001], coding 

techniques have to be developed for the description of image regions, which are no longer squared 

as in conventional rectangular image coding, but may be of arbitrary shape.

Commonly, before video compression, a mathematical transform is used for the reduction of a 

large amount o f statistical redundancy in video frames. Various mathematical transforms have 

been employed. Among them, the discrete cosine transforms (DOT) and thé discrete wavelet 

transform (DWT) are two widely used transforms. DOT has good de-correlative properties and is 

simple for VLSI implementation, so it is applied in most image and video coding standards. In 

recent years, DWT is becoming promising due to its several important properties for image 

coding:

• Offering flexible multi-resolution image representations;

• Avoiding "block effects” associated with the block based transform due to its global 

decomposition characteristic.

The DWT has been chosen by JPEG2000 [JPEG-2000] and used for intra-mode texture-coding in 

MPEG-4 [MPEG4-2001]. However, for scalable texture coding of arbitrarily shaped video 

objects, the conventional mathematical transform should be extended in order to handle the 

problem that arbitrarily shaped video objects have arbitrary numbers o f lines and columns. 

Several modifications have been proposed [SIKORA-1995] [KAUEF-1997] [SHIPENG-2000],

139



Chapter 6. Scalable texture intra-coding o f video objects

which can be classified into three classes. The first class is polynomial fitting, named as padding- 

based algorithm [SIKORA-1995] [EGGER-1996] [KATATA-1997]. In these approaches, the 

contour blocks from arbitrarily shaped video object planes (VOPs) are first padded into block 

regions. The padded blocks are then just handled by conventional transforms, such as DCT and 

DWT. However, this method often yields more signal samples to encode after the transforms and 

therefore is inefficient in compression. The coding artefacts are commonly seen along the object 

boundaries due to the signal padding.

The second class is shape-adaptive DCT (SA-DCT) based scheme [KAUEF-1997]. Shape 

adaptive DCT based scheme presented in [KAUFF-1997] is the most popular scheme and 

included by MPEG-4 Version 2. An attractive feature of this scheme is that the number of 

transform coefficients is exactly the same as that of the input samples. The steps for execution of 

SA-DCT are shown in Figure 6.1. When applied to a block not fully occupied by objects, SA- 

DCT first moves all pixels toward the upper block boundary. A variable basis DCT is applied to 

each column with the number of DCT basis functions equal to the number of coefficients in each 

column. The pixels are then moved toward the left block boundary, and a similar variable basis 

DCT on each row is applied horizontally. Since the SA-DCT always flushes samples in an 

arbitrarily shaped block to a certain edge of a rectangular bounding block before performing row 

or column DCT transforms, some spatial correlation may be lost, which reduces coding 

efficiency.

DCT-6
DCT-5

DCT-2
DCT-1
DCT-1

i i  ̂ i i
(a) Original segment (b) Vertical DCT (c) Horizontal DCT

Figure 6.1 -  Steps for execution of SA-DCT: The pixels in grey correspond to samples inside the

video object.

The third class is shape-adaptive discrete wavelet-based (SA-DWT) scheme [BARNARD-1993] 

[SHIPENG-2000]. One of the most popular SA-DWT algorithms is presented in the paper
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[SHIPENG-2000]. In this algorithm, when the data length was longer than the filter length, it was 

first truncated to the next available even length and transformed directly with a circular wavelet 

transform. The extra data point in case the data length was odd was directly copied into the low 

frequency band. When the data length was shorter than the filter length, the Haar transform was 

applied. This scheme generates the exactly same number of coefficients as that of the original 

object.

Commonly, for image and video coding, SA-DWT should satisfy the following basic conditions 

[BARNARD-1993]:

1. The number of coefficients after SA-DWT should be identical to the number of pixels 

contained in the arbitrary shaped image region, which is a necessary condition for an 

efficient coding method.

2. The spatial correlation and other wavelet transform properties, such as locality and the 

self-similarity across subband should be well preserved. The subbands of all the regions 

should fit together without overlaps or gaps

3. For a rectangular region, the SA-DWT should be identical to a conventional wavelet 

transform.

The objective of this Chapter is to investigate scalable texture intra-coding of still arbitrarily 

shaped video objects. To achieve this, we will begin with a review of subband/wavelet analysis, 

and shape-adaptive discrete wavelet transform. Then, we will review some popular wavelet-based 

texture coding algorithms, such as Set Partitioning in Hierarchical Trees (SPIHT) algorithm 

[SAID-1996], Set-Partitioning Embedded Block (SPECK) algorithm [ISLAM-1999], and 

Embedded Block Coding with Optimized Truncation (EBCOT) algoritiim [TAUB-2000], and 

their extensions for object-based texture coding. After reviewing, an improved shape-adaptive 

SPECK algorithm will then be presented and discussed in detail. Their performance will be 

evaluated and compared through extensive experiments. Some algorithms, such as SA DWT, 

object-based SPIHT and object-based SPECK algorithms are attached in Appendix B.

6,2 SubbandAVavelet analysis

Subband/wavelet analyses have been widely used for image and video compression. For discrete 

wavelet transform (DWT), there are two kinds of implementation schemes: two-band filterbank
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convolution scheme and lifting scheme. The wavelet coefficients computed with these two 

schemes are identical. In this section, these two kinds of implementation schemes will be 

reviewed and discussed.

6.2.1 Two-band filterbank convolution scheme

The subband/wavelet filter banks (FBs) used for image/video compression applications should 

have the following properties: perfect reconstruction (PR), linear phase, finite impulse response 

(FIR), real coefficient, maximally decimated, and uniform band [VILLASENOR-1995]. Here are 

several of our justifications:

• The PR property is highly desirable since it provides a lossless signal representation and 

it simplifies the error analysis significantly.

• For image and video compression, it is also crucial that all analysis and synthesis filters 

have linear phase. Besides the elimination of the phase distortion, linear phase systems 

allow us to use simple symmetric extension methods to accurately handle the 

boundaries of finite-length signals.

• . The filter length should be relatively short to prevent ringing artefacts in the

reconstructed images and to keep the transform fast.

• For image and video compression, especially at low bit rates, we prefer maximally 

decimated FBs that do not expand the input signals.

There are also several solutions [VETTERLI-1986] for the filterbank design in order to realize 

perfect reconstruction (PR) for a two band split scheme. However, this Chapter does not want to 

discuss much on subband/wavelet FIR filterbank design. For review, please refer to some famous 

papers and books [ANTONINI-1992] [VETTERLI-1992] [VETTERLI-1995]. Here, we just want 

to review the standard ID two-band subband analysis / synthesis scheme, as shown in Figure 6.2. 

The input signal is split into two parts by filtering with the low-pass filter H  and the high-pass 

filter G . Both generated signals are then downsampled by a factor 2. We assume that these two 

signals are coded in a lossless manner and transmitted error free over the channel to the receiver 

side. There, the signals are decoded, upsampled by a factor 2, and filtered with the synthesis filter

H  and G . After multiplication by two to restore the amplitude, both signals are added to obtain 

the reconstructed signal.
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s[a t+ 1 ]

Figure 6.2 — ID two-band analysis/synthesis system
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To use the wavelet transform for image processing, we must implement a 2D version of the 

analysis and synthesis filter banks. Commonly, 2D separable wavelet decomposition is conducted 

to reduce the computation. In this case, the ID analysis filter bank is first applied to the columns 

of the image and then applied to the rows. Suppose the image has N\ rows and N 2  columns. 

After applying the ID analysis filter bank to each column, we have two subband images, each 

having T/j / 2 rows and V 2 / 2 columns. Then, applying the ID analysis filter bank to each row 

of both of the two subband images, we have four subband images, each having N\ 12 rows and 

N 2 I 2  columns. The original image can be reconstructed perfectly from these four subband 

images by using synthesis process.

6.2.2 Lifting scheme

Recently, an alternative implementation of the subband decomposition or discrete wavelet 

transform (DWT) has been proposed, which is named as “lifting scheme” [CALDERBANK- 

1998]. The generic lifting analysis scheme consists of three steps, the polyphase decomposition, 

the prediction step, and the update step, as depicted in Figure 6.3 (a). At first, polyphase 

decomposition is conducted to separate the even and the odd samples of a given signal S[k] . For 

simplicity, it is assumed that S[k] are scalar value. Since the correlation structure typically shows 

a local characteristic, the even and odd polyphase components are highly correlated, and 

therefore, in a subsequent step, a prediction of the odd samples from the even samples is 

performed. The corresponding prediction operator P for each odd sample S^j^[k] = S[2k +1] is 

a linear combination of its neighbouring even samples:

^even [̂ 1 “  *̂ [2Ar]

and P{s^y^,Xk] = l.PiSey^„[k + /] .
I

where pi is the lifting prediction coefficient.

(6.1)

(6.2)
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Figure 6.3 -  Wavelet analysis and synthesis scheme based on lifting: (a) analysis process and (b)

synthesis process.

As a result of the prediction step, we replace the odd samples by their corresponding prediction 

residual h[k] = Sg^j[2k]-P(s^^^^\k] .  Note that the prediction step is equivalent to applying a 

high-pass filter of a two-channel filterbank [DAUBECHIES-1998] and, in case of video sequence 

coding, it is similar to motion-compensated prediction, as described in [WIEGAND-2003]. 

Finally, the update step of the lifting scheme is conducted in which a low-pass filtering is 

performed by updating the even samples with a linear combination of the prediction

residuals h[k] . The corresponding update operator U is given by:

u{hlk]='Eu,h[h+i].
I

where m/ is the lifting update coefficients.

(6.3)

(6.4)

By replacing the even samples with /[^ ], the given signal S[k] can finally be represented by l[k] 

and /i[Æ], each at half sampling rate as S[k] . In lifting scheme, the lifting coefficients pi  and Ui 

decide the properties of wavelet transform.
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Since both the update and the prediction step are fully invertible, the corresponding transform can 

be interpreted as a critically sampled perfect reconstruction filterbank. In fact, it has been shown 

that any biorthogonal family of FIR filters can be realized with a sequence of prediction and 

update steps [DAUBECHIES-1998]. Figure 6.3 (b) shows the synthesis process of the lifting 

scheme. It simply consists of the application of the prediction and update operator in the reversed 

order with inverted signs on the summation process, followed by the reconstruction process using 

the even and odd polyphase components.

From the structure in Figure 6.3, it can be found that the lifting scheme provides in-place 

computation of wavelet coefficients by overwriting the memory locations that contain the input 

sample values. This provides a significant reduction in the memory usage. Lifting scheme also 

decreases the computational complexity to achieve DWT. Because of these advantages, lifting 

implementation scheme has been included in JPEG 2000 standard [JPEG-2000].

At present, two DWT kernels in terms of the lifting coefficients are popularly used for 

image/video coding. They are Haar wavelet and the 5/3 bi-orthogonal spline wavelet, which are 

presented as follows:

The Haar wavelet: in the case o f the Haar wavelet, the prediction operator and update 

operator Ufjaar are simply given by:

PH.,r{S„«\k] = S[2k] (6.5)

=  (6.6)

such that h[k] = S[2k +1] -  S[2k'\ (6.7)

and /[A:] = S[2k] + i  /i[A:] = i  ( [̂2A:] + S[2k + 1]). (6 .8 )

where l[k] and hffcl correspond to the low-pass and high-pass (analysis) output of the Haar filter, 

respectively.

The 5/3 bi-orthogonal spline wavelet: The low- and high-pass analysis filters have 5 and 3 taps, 

respectively, for the 5/3 spline wavelets. Its simplicity, together with a remarkable good 

performance in still image coding (like JPEG 2000), makes its popular use for image and video 

subband coding. In the lifting framework, the corresponding prediction operator P5/3 and update 

operator of 5/3 transform are given by:
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P in  fevanX*] = ̂ («[2^] + s [2 i + 2 Î  (6.9)

t^5/3W *]=;jto+A [i-l]), (6.10)

such that:

# ]  = S[2k+1] -  i  (S[2i]+ Sl2k+2]), (6.11)

/[i] = S[2i] + 1  (AW + A[ft -1])

= S[2 A] + i  (S[2A +1] + S[2k -1]) -  i  (S[2 A + 2] + S[2k -  2])
(6 .12)

6.3 Shape-adaptive discrete wavelet-transform (SA-DWT)

This section gives a review of the shape-adaptive DWT algorithm. There are several advantages 

of SA-DWT over the conventional DWT for image/video compression. First, the subband 

analysis o f a region is totally independent of neighbouring regions, so quantisation errors only 

have local effect. Second, the high frequency subbands generated by SA-DWT contain less 

energy than those of the conventional DWT. Commonly, the energy in the high frequency 

subbands of the conventional DWT mainly corresponds to the strong transitions in the original 

image, and the transition information is spread over subbands in several levels and several 

directions. Such a spread results in a significant cost for the coding system, but SA-DWT 

decreases such transition coming from the object boundaries. Since filtering across the sharp 

edges located at the objects’ contour is avoided, ringing artefacts near these edges will be almost 

eliminated. Finally, the bit allocation would be able to favour important regions in a video frame, 

since bits can be assigned to each object and each subband segment separately.

Shape adaptive discrete wavelet transform is needed for efficiently coding arbitrarily shaped 

visual objects, which is essential for object-oriented multimedia applications. In fact, shape- 

adaptive discrete wavelet transform is a more delicate work. Its subsampling techniques and 

extension methods should be treated attentively so as not to lessen the performance of final 

coding. Commonly, the selected filters and the corresponding subsampling / extension techniques 

affect the final coding performance [SHIPENG-2000].

Much research has been conducted on SA_DWT [BARNARD-1993] [SHIPENG-2000]. In 

[BARNARD-1993], the authors gave overview of what needed to be done and how to do for SA- 

DWT, but they do not provide a good solution. A comprehensive description of shape-adaptive
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DWT algorithm is presented in Li’s paper [SHIPENG-2000]. In his paper, wavelet decomposition 

methods of using different wavelet filters, such as orthogonal filters, even symmetric biorthogonal 

filters, and odd symmetric biorthogonal filters in the SA-DWT are discussed in details. Much 

research has shown that odd symmetric biorthogonal wavelet filters can achieve better 

compression performance [VILLASENOR-1995]. Another advantage of odd symmetric 

biorthogonal wavelets is that they can provide linear phase filters, hence, eliminating the phase 

distortion caused by magnitude distortion of transformed coefficients. This is very important 

when they are applied for image and video compression where magnitudes of the transformed 

coefficients are mostly likely to be quantised. Therefore, odd symmetric biorthogonal wavelet 

filters have been selected as the default wavelet filters in MPEG-4 standard [MPEG4-2001]. In 

our research, only the case of arbitrary length wavelet decomposition using odd symmetric 

biorthogonal wavelets is investigated and employed. Refer to [SHIPENG-2000] for more details 

of odier two cases.
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Figure 6.4 -  Example of (a) periodic extension and (b) symmetric extension

Two issues should be clarified related to SA-DWT. The first one in applying wavelet 

decomposition for finite-length signal segment is how to deal with the boundary of the signal 

segment. In order to maintain the perfect reconstruction property of wavelet transform, boundary 

extension is necessary, such as periodic extension and symmetric extension as shown in Figure 

6.4. If the signal segment is long, the correlation between the end of the signal and the start of the 

signal is small. There could be a good chance of a sharp change at the transition from the end of 

previous signal period to the start of the next signal period if  the periodic extension method is 

used. In the symmetric extension scheme, the signal is extended symmetrically at the leading and 

trailing boundaries of a signal segment. The neighbouring samples with such symmetric 

extensions have the same close correlation as in the original signal segment. Therefore, shape 

transitions are avoided.
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The other issue is the subsampling for arbitrary length signal segment at arbitrary locations. A 

proper subsampling method is important for the SA-DWT. One consideration for the subsampling 

is that it should keep the spatial correlation, locality, and self-similarity across subbands so that 2 - 

D separable wavelet decompositions and pyramid wavelet decomposition can still be applied to 

the arbitrarily shaped image region without loss of spatial correlation. The subsampling strategy 

can also affect the efficiency of zerotree coding. Commonly, the subsampling process is decided 

by the employed wavelet filters. Let {g(0>* = -l}» = - l} ,

{g (z), I = 0 , • • •, Z,;, - 1}, and {ft (z), z = 0 , • • •, - 1) be the impulse response of the low-pass analysis

filter, high-pass analysis filter, low-pass synthesis filter and high-pass synthesis filter, 

respectively. The filter lengths, both Lg and , are odd numbers. Let x(z) be the input signal

with the finite length with appropriate extensions at the leading and trailing boundaries. The 

relations between these filters and wavelet analysis/synthesis process can be summarized in 

Appendix B .l

Assuming a signal segment {x(/),y = 0 ,• • • ,/ /- l} ,  with length /Z, and combining symmetric 

extensions, filtering and subsampling together, the arbitrary length wavelet decomposition using 

odd symmetric wavelet transforms can be described as follows (s  is defined in Appendix B.l to 

indicate subsampling position):

1. If A/ = l , this isolated sample is repeatedly extended and the low-pass wavelet analysis 

filter is applied to obtain a single low-pass wavelet coefficient. The synthesis process 

simply scales this single low-pass coefficient by a factor of l/ZT {K  = % ^ ^ g (0 ) , and 

puts it in the correct position in the original signal domain.

2. If N  is greater than 1, and p = 0  if  A  is even, p  = 1 if  A  is odd, the signal segment is 

extended using the type shown in Figure 6.4 (b). The ( / / / 2  + p ( l- f) )  low-pass wavelet 

coefficients C(z), i = s, • • •, (ZZ / 2 -  (l -  p%l -  f)) , are generated by Equation (B_l .5), 

(Equation in (B_1.7) in Appendix B .l). The (ZZ/2 + ps) high-pass wavelet coefficients 

Z)(z),z = 0,” * ,(zz /2 -l+ p j), are generated by (B 1 .6), (Equation in (B_1.8) in Appendix 

B.l). The synthesis process begins with upsampling the low- and high-pass wavelet 

coefficients using (B 1.9) and (B l.lO), respectively. As a result, an upsampled low-pass 

segment P{J) and an upsampled high-pass segment q {j ) are obtained, where 

y = 0,-” , A - l .  The up-sampled low- and high-pass segments P ij)  and Q Îj) are then 

extended using the type in Figure 6.4 (b). The extended low-pass and high-pass signal
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P(j) and G(/) are then synthesized using (B l.l 1) and (B_1.12) to reconstruct the signal 

segment r ( / ) , 7  = 0 , -” , ZZ - l ,
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Figure 6.5 -  Example of SA-DWT with even-sampling for the low-pass wavelet coefficients and 

odd-sampling for the high-pass wavelet coefficients for an odd length signal segment [SHIPENG-

2000].

Figure 6.5 examplifies the analysis and synthesis process with even-sampling for the low-pass 

wavelet coefficients and odd-sampling for the high-pass wavelet coefficients for an odd length 

signal segment.

6.4 Wavelet-based texture coding of video frame

For image and video compression, DWT-based coding algorithms have been proved to 

outperform DCT-based coding techniques by a wide margin, in terms o f compression efficiency 

and enhanced feature such as scalability. That is the reason why both MPEG-4 and JPEG2000 

have selected wavelet-based scheme as the basis for coding still texture and images [MPEG4- 

2001] [JPEG-2000]. In this section, the main wavelet-based coding algorithms are reviewed. They
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are SPIHT algorithm [SAID-1996], SPECK algorithm [ISLAM-1999] and EBCOT algorithm 

[TAUB-2000]. All of these algorithms employ some kind of significant testing of sets or groups 

of pixels, in which the set is tested to determine whether the maximum magnitude in it is above a 

certain threshold. The results of these significant tests determine the path taken by the encoder to 

code the source samples. These significance testing schemes are based on some very simple 

principles which allow them to exhibit excellent performance. Among these principles is the 

partial ordering of magnitude coefficients with a set-partitioning sorting algorithm, bit plane 

transmission in decreasing bit plane order, and exploitation of self-similarity across different 

scales of an image wavelet transform.

Figure 6 .6  -  Three-layer wavelet decomposition of “Lady” image

All of these algonthms consist of three steps: (1) Discrete wavelet transform (DWT); (2) 

quantisation; and (3) entropy coding. DWT is used to generate the subband samples. Figure 6 .6  

shows the wavelet decomposition result of “Lady” image. The original image is represented in 

terms of a collection of subbands, which are organised into increasing resolution levels. The 

wavelet coefficients are typically organised into a hierarchical data structure, so that bit allocation 

and data compaction can be employed more efficiently.

6.4.1 SPIHT

SPIHT algorithm (Set partition in hierarchical tree algorithm) was proposed by A. Said and W. A. 

Pearlman [SAID-1996]. It is the refinement of embedded zerotree wavelet (EZW) algorithm of J.
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Shapiro [SHAPIRO-1993], which imposes a hierarchical quadtree structure on wavelet- 

transformed image. But in this algorithm, the crucial parts of the coding process are 

fundamentally different from EZW technique in that the subset partitioning of SPIHT algorithm is 

so effective that even un-encoded binary bit stream can achieve better performance than E27W 

algorithm.

SPIHT algorithm can achieve progressive image coding and transmission easily. The encoding 

algorithm orders the coefficients by magnitude and transmits the most significant bits first. It can 

be stopped at any allocated number o f bits, or at any peak signal to noise ratio (PSNR) value. In 

the SPIHT algorithm, the parent-children dependencies of subbands are the same as that in EZW 

algorithm, which are shown in Figure 6.7 (a). The coefficient at the coarse scale is called the 

parent. All coefficients corresponding to the same spatial location at the next finer scale of the 

similar orientation are called offsprings. For a given parent, the set of all coefficients at all finer 

scales of similar orientation corresponding to the same location are called descendants. Similarly, 

for a given child, the sets of coefficients at all coarser scales of similar orientation corresponding 

to the same location are called ancestors. The tree is defined in such a way that each node has 

either no children (the leaves) or four children.

Given a threshold level T , a coefficient x  is said to be an element o f a zerotree for threshold T  

if  itself and all of its descendents are insignificant with respect to T .  An element of a zerotree for 

threshold T is a zerotree root if  it is not the descendant of a previously found zerotree root for 

threshold T , which is encoded with a special symbol indicating that the insignificance of the 

coefficients at finer scale is completely predictable.

In Figure 6.7 (a), the arrows are oriented from the parent node to its four children. The pixels in 

the highest level of the pyramid are the tree roots and are grouped in 2  by 2  adjacent pixels. 

However, the children branching rule is different, and in each group, one of them has no 

descendants. In Figure 6.7 (b), it is shown that the parents must be scanned before children, and 

all positions in a given subband are scanned before the scanning of the next subband.
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Figure 6.7 -  (à) the parent-children dependencies of subbands; and (b) scanning order during 

coding significant map of SPIHT algorithm

The significant test order is very important for the synchronization between encoder and decoder 

without any header information. There are three lists in SPIHT algorithm. They are the list of 

significant pixels (LSP), the list o f insignificant pixels (LIP), and the list o f insignificEmt sets 

(LIS). They are initialized by different sets. We refer to the set of root node and corresponding 

descendants as a spatial orientation tree (SOT). The LSP is initially empty, the LIP is initialized 

with the elements of the lowest frequency subband, and the LIS is initialized with the root of each 

SOT.

During encoding, a threshold is needed to decide the significance. Commonly, it is chosen as 

r ( o ) = 2 ”o , where hq is selected such that the largest pixel magnitude, say M , satisfies 

2"“ < 2"® '̂. The encoding process is progressive in pixel magnitude, using a sequence of

thresholds Z'(«) = 2”‘̂ ~” , w = l,2,*--. At stage n , all pixels with magnitudes satisfying 

T{u) ̂  |x| < 2T(n) are identified as significant and their positions and sign bits are encoded.

The encoding process includes two passes: sorting pass and refinement pass. During the sorting 

pass, the pixels in the LIP — which were insignificant in the previous pass — are tested, and 

those that become significant are moved to the LSP. Similarly, sets are sequentially evaluated 

following the LIS order, and when a set is found to be significant it is removed from the list and 

partitioned. The new subsets with more than one element are added back to the LIS, while the 

single-coordinate sets are added to the end of LIP or the LSP, depending on whether they are 

significant or insignificant, respectively. In the refinement pass, the LSP contains the coordinates

152



Chapter 6. Scalable texture intra-coding o f video objects

of the pixels that are visited and refined by encoding the n-th most significant bit. Refer to the 

paper [SAID-1996] for the more detailed description on SPIHT algorithm.

6.4.2 SPECK

The SPECK coding algorithm belongs to a class of embedded tree structured significance 

mapping schemes [SHAPIRO-1993] [SAID-1996] [ISLAM-1999]. It exploits two fundamental 

characteristics of a wavelet-transformed image -  the well-defined hierarchical structure, and 

energy clustering in frequency and in space. However, SPECK algorithm differs from SPIHT and 

EZW algorithms in that it does not use trees which span and exploit the similarity across different 

subbands; rather it makes use of sets in the form of blocks. It mainly exploits the clustering of 

energy in frequency and space in hierarchical structures of transformed images. In the SPECK 

algorithm, the quadtree is formed by successive recursive splitting of a subband block (parent) 

into four quadrants children. The pixels are grouped together in sets which comprise of regions in 

the transformed image. The transformed image is partitioned into two sets; set S  and set I , as 

shown in Figure 6 .8  (a). Only two linked lists are maintained in the SPECK algorithm: LIS -  List 

of insignificant sets, and LSP -  List of significant pixels. The former list contains sets of type S  

of varying sizes which have not yet been found significant against a threshold n , while the latter 

list obviously contains those pixels which have tested significant against n . Alternatively, as will 

become obvious later on, an array o f smaller lists of type LIS is used, each containing sets of type 

5  of a fixed size, instead of using a single large list having sets S  of varying sizes. Use of 

multiple lists will speed up the encoding/decoding process.

The SPECK coding algorithm consists of the initial step, the sorting pass and the refinement pass. 

The algorithm starts by partitioning the image into two sets: set 5', which is the root of the 

pyramid (or the coarsest level), and set I  which is everything that is left of the image after taking 

out the root (see Figure 6 .8  (a)). The dimension of set S  depends on the dimension of the original 

image and the subband level o f the pyramidal structure at which the set lies. To start the 

algorithm, set S  is added to L IS .

In the sorting pass, when data set S  is significant, it is partitioned into four subsets 0 (5 ) , as 

shown in Figure 6 .8  (b); each of these four child sets is further tested and partitioned until all the 

significant coefficients are found. The significance test results of the four subsets are all coded 

together before further processing the subsets. For example, the significant test result of the first 

set is coded without any context, while the significant test result of the second subset is coded 

using the context of the first coded subset, and so on. In this way, previously coded subsets form
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the context for the subset being currently coded. Once all sets of type S  are processed, the set /  

is processed by testing it against the same threshold n. If it is found to be significant, it is 

partitioned by another partition scheme as shown in Figure 6 .8  (c).

X

new I

(b)(a)
Figure 6 .8  -  Set partitioning in SPECK algoritihm: (a) Partitioning of image X  into set S  and I  ;

(b) Partitioning of set S ; and (c) Partitioning of set I

In the refinement pass, the significant coefficients found in the sorting pass are refined and 

transmitted to decoder according to the bit-plane transmission. Once the refinement pass has been 

done, the threshold is lowered and the sequence of sorting pass and refinement pass is repeated 

against the lower threshold. This process is repeated until the desired rate is achieved. For detailed 

information about the SPECK algorithm, please refer to the original papers [ISLAM-1999].

6.4.3 EBCOT

EBCOT algorithm is proposed by Taubman [TAUB-2000], which is related in various degrees to 

much earlier work on scalable image compression, such as Shapiro’s EZW algorithm [SHAPIRO- 

1993], Said and Pearlman’s SPIHT algorithm [SAID-1996] and Taubman and Zarhor’s LZC 

algorithm [TAUB-1994]. It has been adopted in JPEG2000 [JPEG-2000] due to its high 

compression efficiency as well as other excellent features, including resolution and SNR 

scalability. Unlike SPIHT algorithm, which uses spatial orientation trees, EBCOT algorithm 

partitions each subband into relatively smaller code blocks. Every code block is encoded 

separately so that a highly embedded bitstream is generated separately for each code block. Given

a target bit-rate each of the independent code-block bit-streams can be truncated in an

optimal way so as to minimise distortion subject to the bit-rate constraint, which is referred as 

post-compression rate-distortion (PCRD) optimisation.
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Figure 6.9 -  Progressive representation of embedded code-block bit-streams in quality layers. The 

blocked region identifies the block contributions, which are discarded by truncating the bit-stream

between layer 1 and 2 .

Figure 6.9 illustrates the layered bitstream concept. It also illustrates the effect of truncating the 

bit-stream between the first and second layers. Each quality layer must include auxiliary 

information to identify the size of each code-block contribution to the layer. When the number of 

layer is large, only a subset of the code-blocks will contribute to any given layer, introducing 

substantial redundancy in the auxiliary information. EBCOT introduces a two-tiered coding 

strategy to compress the auxiliary information for each quality layer, as shown in Figure 6.10.

During the embedded block coding, four different primitive coding operations form the 

foundation of the embedded block coding strategy of EBCOT algorithm. The primitives are used 

to code new information for a single sample in some bit-plan. If the sample is not yet significant, 

a combination of the "Zero coding” (ZC) and “run-length coding” (RLC) primitives is used to 

code whether or not the symbol becomes significant in the current bit-plane; if so, the “Sign 

coding” (SC) primitive must be invoked to identify the sign. If the sample is already significant, 

the “magnitude refinement” (MR) primitive is used to encode the bit for the magnitude of current 

bit-plane. In every case, a single binary-values symbol must be coded using the arithmetic coder.

The probability model used by an arithmetic coder involves the following contexts: nine for the 

zero coding primitive, one for the RLC primitive, five for the sign coding primitive, and three for 

the magnitude refinement primitive.
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Figure 6.10 -  Two-tiered coding structure of the EBCOT image compression algorithm

Zero coding (ZC): This primitive is used to code whether an insignificant coefficient 

changes to a significant one in the current bit-plane. Eight immediate neighbours of the 

current coefficient are used to determine the context mode, which are decided by the 

number of significant neighbours in horizontal direction h, vertical direction v and 

diagonal direction d , shown in Figure 6.11.

Figure 6.11 -  Encoded sample and its neighbours

• Run-length coding (RLC): This primitive is used to reduce the average number of binary 

symbols which must be processed by the arithmetic coding engine. It is invoked in place of 

the ZC primitive when a horizontal run of insignificant samples is encountered and whose 

immediate neighbours are all insignificant.

• Sign coding (SC): This primitive is used to code the sign of a coefficient when it becomes 

significant.
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• Magnitude Refinement (MR): The objective of this primitive is to code the value of a 

significant coefficient in the current bit-plane. The contexts are decided by the significance 

of its neighbours.

Four encoding passes are defined in EBCOT algorithm which formulates the possible truncation 

points for each bit-plane. They are “Forward significant propagation pass”, “Reverse significant 

propagation pass”, “Magnitude refinement pass”, and “Normalisation pass”. Paper [TAUB-2000] 

gives a detailed description on how to process these passes and generate the bitstream.

After generating the bitstream of all code blocks, the second tier coding engine is ignited, which is 

responsible for efficiently identifying the contribution of each code-block to each bit-stream layer, 

along with other summary information for the code-blocks. Rate-distortion optimisation algorithm 

is developed to allocate the bits among the code-blocks [TAUB-2000]. The inter-block 

redundancy is exploited in the second tier coding engine, which only operates on the summary 

information for the whole code-blocks, rather than individual samples.

EBCOT algorithm also supports region-of-interest (ROI) coding although in this algorithm the 

transform and coding of the ROIs and the background are not done separately in the wavelet 

domain. For detailed information about the EBCOT algorithm, please refer to the original papers 

[TAUB-2000].

6.5 Wavelet-based texture coding of arbitrarily-shaped video objects

In this section, a number of shape-adaptive texture coding techniques are reviewed, which are the 

extensions of the methods discussed in Section 6.4. A straightforward approach is to consider 

transparent regions to be permanently “insignificant”, such that significant pass (or sorting pass) 

and refinement pass of the encoder can process these transparent regions in a manner identical to 

that of other insignificant coefficients. Although most approaches are based on this general idea, 

depending on the particular method o f significant-map coding involved, additional refinements 

are often possible to increase performance. In this section, the main algorithms for texture coding 

of arbitrarily-shaped video objects are first reviewed. Then, a proposal for an improved shape- 

adaptive SPECK algorithm will be presented and discussed.

6.5.1 Extension of existing algorithms for object-based texture coding
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6.5.1.1 Shape-adaptive SPIHT algorithm (SA-SPIHT)

Much research has been conducted to extend the SPIHT algorithm for arbitrarily shaped object 

coding (e.g. [MINAMI-2001]). The aim is to modify the original SPIHT algorithm so that 

extraneous coefficients, which are not in the arbitrary region-of-support (AROS), are not encoded. 

Similar to shape-adaptive wavelet decomposition presented in Section 6.3, the shape image is also 

decomposed into a pyramid of subbands, called shape mask pyramid. In this way, the regions 

which belong to the object in each subband are known by both the encoder and decoder. We 

create the shape mask pyramid to represent the shape of the video object in each subband. Each 

pixel of the shape mask has the 2 -bit mask value: 1 bit is used to distinguish whether the current 

wavelet coefficient is within the object; the other bit is used to tell whether its child branch is 

within the object. The child branch is defined according to the parent-child relations in the SA- 

SPIHT algorithm as shown in Figure 6.12.

H  Node beloKgi to the object 

I I Node does not belong to the «Aject

Solid line : Valid parent child relation 

Dash line : Invalid paient-child relation

Figure 6.12 -  Parent-child relation of wavelet trees of SA-SPIHT algorithm

For SA-SPIHT algorithm, a spatial orientation tree is skipped if all coefficients in the tree are not 

in the AROS. This is simply done by not putting the coordinates of the root node (in the lowest 

frequency band) of the tree in the LIP and the LIS in the SPIHT initialization step.

For a spatial orientation tree with some coefficients not in the AROS, the significance test of a 

coefficient in the tree is skipped if that coefficient is not in the AROS. Likewise, the significance
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test of a subset in the tree is skipped if all coefficients in the subset are not in the AROS. As sign 

bits and refinement bits are only associated with the coefficients in the AROS, no modification 

are needed in related parts of the original SPIHT algorithm for these bits. Finally, when all 

coefficients in a spatial orientation tree are in the AROS, the tree is coded in the same way as in 

the original SPIHT algorithm.

If the AROS is the whole image, the SA-SPIHT algorithm described above will give exactly the 

same R-D performance as the original SPIHT algorithm does. So the SA-SPIHT algorithm 

includes the original SPIHT algorithm as a special case. The detail description of SA-SPIHT 

algorithm is listed in the Appendix B.2.

6.5.1.2 Shape-adaptive SPECK algorithm (SA-SPECK)

A straightforward extension of the SPECK algorithm in [ISLAM-1999] to encoding video objects 

of arbitrary shape is that we set all the coefficients outside the object in each subband to zero. 

Then the original SPECK algorithm can be applied just as if the support of the object were 

rectangular. No modification of the algorithm would be required. This method is inefficient, since 

one bit must be transmitted to tell the decoder that the node or branch outside the object is 

insignificant under each threshold.

In order to improve its performance, an efficient SA-SPECK algorithm was proposed [LU-2001]. 

Similar to SA-SPIHT algorithm, in SA-SPECK algorithm, the shape image is also decomposed 

into a pyramid of subbands, called the shape mask pyramid. The regions, which belong to the 

object in each subband, are known by both the encoder and the decoder. When the spatial 

orientation tree is constructed, which node and/or child branch are inside/outside the video object 

is known. Before the coding process, the node and branch outside the video object are pruned. 

During the sorting pass in SA-SPECK algorithm, those nodes and branches are not added to any 

list of LSP, LIP and LIS. Therefore, no information about these nodes and branches are 

transmitted. When the encoder and decoder scan these nodes and branches, they will be informed 

by the shape mask pyramid and skip over them.

The parent-child relation in SA-SPECK algorithm is illustrated in Figure 6.13. In this figure, the 

branches, which correspond to the nodes outside the object (represented by the dash arrows), are 

pruned before the encoding process begins. The detail description of SA-SPECK algorithm is 

listed in the Appendix B.3.
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Figure 6.13 -  Parent-child relationship in the SA-SPECK algorithm 

6.5.1.3 Shape-adaptive EBCOT algorithm (SA-EBCOT)

For object-based extension of EBCOT algorithm, a modification is made so that it only scans and 

codes the coefficients inside the video object after performing the shape-adaptive wavelet 

decomposition [LIU-2002]. For all the three bit scan passes, namely the significant propagation 

pass, the magnitude refinement pass and the normalization pass, all coefficients outside the video 

object are skipped. The same bit-plane coding primitives (ZC, SC, and MR) are used in the 

extended EBCOT, but they are only applied to wavelet coefficients inside the video object. A 

direct neighbour outside the object is always treated as an insignificant neighbour. During our 

research and experiments, this algorithm has not been implemented and tested. But from the 

reported results in [LIU-2002], good compression results can be achieved.

6.5.2 Proposal for texture coding of arbitrarily-shaped video object

In this section, an improved variant of SA-SPECK algorithm designed specifically for shape- 

adaptive texture coding has been proposed and discussed. The reason that I choose SPECK 

algorithm is its good compression performance as well as fast compression speed [ISLAM-1999]. 

Furthermore, it is easy to implement by using software.

The improved shape-adaptive SPECK algorithm employs two tactics:
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1. Aggressive discarding of transparent regions from sets after partitioning as shown in 

Figure 6.14;

2. Context-adaptive binary arithmetic codec (CABAC) [MARPE-2003] is employed to code 

the sign and significant map. For the original SA-SPECK algorithm, the significance 

information, the sign, and the bits during the refinement pass are encoded using adaptive 

arithmetic codec (AAC). However, it is found the context information around the pixel to 

be encoded can be exploited to improve the coding performance, just as the EBCOT 

algorithm [TAUB-2000].
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Figure 6.14 -  The “shrunk” process to the bounding box of the opaque coefficients in the set

The improved SA-SPECK algorithm starts by splitting the set of transform coefficients X into 

individual subbands S  which are placed in a list of insignificant sets (LIS). Afterward, the 

algorithm follows the common bitplane-coding paradigm, such as SPECK algorithm consisting of 

the sorting and refinement passes.

Similar to the original SA-SPECK, the improved algorithm determines the significance of a set by 

comparing the largest opaque-coefficient magnitude to the current threshold. Sets without a 

significant coefficient are placed in the list L IS . During the sorting pass, each set in LIS is tested 

for significance against the current threshold. If the set becomes significant, it is split into four 

subsets according to the quadtree decomposition structure illustrated in Figure 6.14. When a set of 

coefficients S  is split during the sorting pass, the four new subsets, 5 ,, 6 ";, 1S3 , and S^ , are 

placed into an LIS, recursively tested for significance and split again if needed. Additionally, in 

the sorting pass, before the set S  is added to an LIS, the set is “shrunk” to the bounding box of 

the opaque coefficients in the set as shown in Figure 6.14. Similar to the original SA-SPECK 

algorithm, the improved algorithm encodes the significance test results of the four subsets jointly 

before further processing the subsets. If the first three subsets are empty or insignificant, the
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algorithm can deduce the significance of the fourth subset without sending any bits. During 

significant coding of set S , the context model is decided from its neighbouring sets, which are 

shown in Figure 6.16.

In the improved SA-SPECK algorithm, context-adaptive binary arithmetic codec (CABAC) 

[MARPE-2003] is applied to code the significant map, sign bits and refinement bits, in order to 

employ the strong dependency among subbands through modelling contexts. By combining an 

adaptive binary arithmetic coding technique with context modeling, CABAC can achieve a high 

degree of adaptation and redundancy reduction. It significantly outperforms the baseline entropy 

coding method of H.264/AVC for the typical area of envisaged target applications. The CABAC 

encoder block diagram is illustrated in Figure 6.15. The encoding process of CABAC consists of 

three elementary steps: Binarization; Context modeling; and binary arithmetic coding.

bin iialue/arca/ifAff w o r f r f  i«j

bin'^vtue, 
conlclft model

non-binary valued 
iyntax element
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ilrin g

coded bll
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-binary mliied 
syataxelemeht.

bln value

Binâ  .

Bhinrizcà Context
Modeler

Bypass 
Coding Engine

Regular
Coding
Engine

Figure 6.15 -  CABAC encoder block diagram [MARPE-2003]

Since it is the context model that determines the coding efficiency in the first place, it is of 

paramount importance to design an adequate context model that explores the statistical 

dependencies to a large degree and that this model is kept “up to date” during encoding. In the 

improved SA-SPECK algorithm, different contexts are used for significant bits, sign bits and 

refinement bits coding.

For significant bit coding, the neighbouring nodes, shown in Figure 6.16 (a), are included in the 

modelling contexts. Eight spatial adjacent nodes from the same subband are utilised to exploit 

intraband correlation. Such a contextual structure has been employed in EBCOT algorithm 

[TAUB-2000]. In order to exploit the interband correlation, the corresponding node in the next 

high subband is also employed, as shown in Figure 6.16 (b). This choice is based on the fact that 

there exits a strong correlation between the coefficients of the two adjacent subbands. Instead of 

treating the entire resulting context vector (2 ® totally) as different conditional states, we carefully
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classify into several model classes, similar to the context selection adopted in EBCOT algorithm 

[TAUB-2000]. The look-up tables are established accordingly to fast map a given context to the 

assigned model index, as shown in Table B 4.1 in Appendix B.4. Given a pixel (i,y), its 

significant map can be defined by:

o ( i j )  =
1, i f  node ( i,j)  is significant, 

[0 , otherwise.
(6.13)

Therefore, the variable P , H  , V , H V , and D  can be decided as follows: 

/ /  = <7 (fF) + <r(E), such that 0 < / / ^ 2 ;

V = <t(a) + (j{s), such that O ^V  ^ 2 ;

HV = H  + V , such that 0 ^ H V  ^  4 ;

D = (t{NW) + (t{NE) + cr(SfV) + a(SE ), such that 0 ^ D ^ 4 ;

(6.14)

(6.15)

(6.16) 

(6.17)

P  = ct(f ) ,  such that 0  ^  P  ^ 1 . (6.18)

where, the relative positions of node fV , E , N , S , NW  , N E , SPT, SE and F  are 

shown in Figure 6.16 (a) and (b).

LL LH N ME
W X E

s SE

HL HH

(a) (b)

Figure 6.16 -  Modelling contexts for the coding of significance, (a) Intraband neighbours 

included in the context modelling; (b) Interband neighbour during context modelling
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In the original SA-SPECK algorithm, compressibility of sign bits of subband coefficients had not 

been fully employed. Improvement on sign bit coding is possible. In the improved SA-SPECK 

algorithm, a sign coding scheme similar to EBCOT algorithm is adopted [TAUB-2000]. The sign 

coding operation follows the three basic steps:

1. Summarise the sign and significant information about the neighbour coefficients in the 

different orientations.

2. Predict the sign of the current coefficient based on the information collected in the 

previous step.

3. Encode the correctness of sign prediction.

The contribution fi'om the horizontal direction is formulated in Table B 4.2 of Appendix B.4, 

where the relative position of the neighbouring nodes is indicated in Figure 6.16 (a). In Table 

B 4.2, variable h identifies the contribution from the horizontal direction, where the relative 

position of the neighbouring nodes W and E are indicated in Figure 6.16 (a), and the pair 

(significant/insignificant, +/-) represents the significant status and tiie sign of the neighbouring 

node, respectively.

The contexts for sign coding are included in Table B 4.3 of Appendix B.4. In Table B 4.3, the 

vertical and diagonal contributions, variable v , J 4 5 , and di'^^ are defined in the same way as 

variable h . The sign bit % is then predicted as %. The correctness of sign prediction^ is 

encoded, which is defined to be 1 if  % = % and 0  otherwise.

The same contextual intraband region shown in Figure 6.16 (a) is utilised for conditional coding 

of the refinement of the significant coefficients. The contextual information is characterised by 

significant map and the significant status with respect to the quantisation threshold at the previous 

bitplane level. The related look-up table is given in Table B 4.4, Appendix B.4. In Table B_4.4,

H V ^  is defined in a similar way to HV  except using significance a ^ { i , j ) ,  which is the 

significance status with respect to the quantisation threshold at the previous bitplane level.

This improved SA-SPECK algorithm has been fully implemented in software and extensive 

experiments have been conducted to test the performance o f this algorithm. The results are 

included in the following section.
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(a)

(c)

(b)

MI>KC4
W O R I . I )

(d) (e)

Figure 6.17 -  Video objects used for test: (a) Children; (b) Children-Background; (c) Stefan; (d)

News; (e) Coastguard
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6.6 Experimental results

Extensive experiments have been conducted to study the scalable texture coding algorithms for 

video objects. They are SA-SPIHT algorithm, SA-SPECK algorithm and the improved SA- 

SPECK algorithm. The SA-EBCOT algorithm has not been implemented during our research and 

not compared with above shape-adaptive encoding algorithms. The above algorithms are tested in 

the intra-coding mode without motion estimation and compensation. Five monochrome video 

objects are used during the tests which are shown in Figure 6.17. During the encoding and 

decoding processes of the arbitrarily shaped video objects, the bitrate (bit/pixel) is calculated 

based on the number of pixels within the object. Here, it is assumed that the object shape has been 

encoded and the bits used for shape coding is not included. For these five video objects in Figure 

6.17, the Rate-distortion curves of SA-SPIHT, SA-SPECK and the improved SA-SPECK 

algorithms are shown in Figure 6.18.

Due to the CABAC, the improved SA-SPECK algorithm has higher complexity than the original 

SA-SPECK algorithm using arithmetic coder. However, the complexity does not increase much 

(about 20-40%) as no binarization step is required. The significant bits, sign bits and refinement 

bits are all binary symbols.
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PSNR (dB)
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Improved SA-SPECK

30 SA-SPECK

SA-SPIHT25
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24
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Figure 6.18 -  Comparison of R-D performances of different shape-adaptive bit-plane coding 

algorithms for (a) Children; (b) Children-background; (c) Stefan; (d) News; (e) Coastguard

objects
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The average PSNR results o f the three algorithms on these video objects are also listed in Table

6.1 to Table 6.4 for the bit rates 0.2 bpp, 0.5 bpp, 1.0 bpp and l.Sbpp, respectively, including the 

improvements o f the proposed S A_SPECK algorithm over the original one.

Table 6 .1  -  Distortion performance for the shape-adaptive coders under 0.2 bpp

Image Object
PSNR(dB)

SA-SPIHT SA-SPECK Improved SA-SPECK AdB

Children 19.33 19.78 19.95 0.17
Children-Background 23.98 24.21 24.26 0.05

Stefan 20.85 21.30 21.64 0.34
News 20.13 20.60 20.85 0.25

Coastguard 12.60 14.06 14.71 0.65

Table 6 . 2  -  Distortion performance for the shape-adaptive coders under 0.5 bpp

Image Object
PSNR(dB)

SA-SPIHT SA-SPECK Improved SA-SPECK AdB

Children 22.80 23.47 23.55 . 0.08
Chil&en-Background 29.34 29.73 29.78 0.05

Stefan 23.95 24.70 24.83 0.13
News 23.94 24.94 25.22 0.28

Coastguard 18.07 19.19 19.80 0.61

Table 6.3 -  Distortion performance for the shape-adaptive coders under 1.0 bpp

Image Object
PSNR(dB)

SA-SPIHT SA-SPECK Improved SA-SPECK AdB

Children 26.99 27.87 28.03 0.16
Children-Background 35.37 35.75 35.80 0.05

Stefan 28.11 29.23 29.36 0.13
News 26.65 30.14 30.42 0.28

Coastguard 21.93 23.36 24.28 0.92

Table 6.4 -  Distortion performance for the shape-adaptive coders under 1.5 bpp

Image Object
PSNR(dB)

SA-SPIHT SA-SPECK Improved SA-SPECK AdB

Children 30.29 31.45 31.67 0 .2 2

Children-Background 40,09 40.42 40.46 0.05
Stefan 31.44 32.94 33.05 0 .1 1

News 29.77 34.42 34.67 0.25
Coastguard 25.04 27.28 27.96 0 .6 8
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From above tables and figures, it is found that the coding efficiency of SA-SPECK algorithm is 

better than that of SA-SPIHT algorithm. The difference of PSNR is about 1.0 -  3.0 dB. The SA- 

SPECK algorithm also preserves the features of an embedded bitstream and allows exact bitrate 

control. The improved SA-SPECK algorithm can further improve the efficiency for about 0.1 -  

0.4 dB when compared with the original one. Figure 6.19 to Figure 6.23 show the decoded video 

objects at bitrates of 0.2 bpp, 0.5 bpp, 1.0 bpp and 1.5 bpp for Children, Children-background, 

Stefan, News and Coastguard objects respectively.

(a)

a

(b)

%

(c) (d)

Figure 6.19 -  Decoded Children object under (a) 0.2 bpp; (b) 0.5bpp; (c) l.Obpp; and (d) 1.5bpp

by truncating the same pre-coded bitstream
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(c) (d)

Figure 6.20 -  Decoded Children-background object under (a) 0.2 bpp; (b) 0.5bpp; (c) l.Obpp; and

(d) 1.5bpp by truncating the same pre-coded bitstream

(a) (b)
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(C) (d)
Figure 6.21 -  Decoded Stefan object under (a) 0.2 bpp; (b) 0.5bpp; (c) l.Obpp; and (d) l.Sbpp by

truncating the same pre-coded bitstream

UDftl It
MPKCJ
\NOKl.n

(a) (b)

MrKG4 
NNOKI I)

M PKG 4
W O R M )

(c) (d)

Figure 6.22 -  Decoded News object under (a) 0.2 bpp; (b) O.Sbpp; (c) l.Obpp; and (d) l.Sbpp by

truncating the same pre-coded bitstream
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(a) (b)

(c) (d)

Figure 6.23 -  Decoded Coastguard object under (a) 0.2 bpp; (b) O.Sbpp; (c) 1 .Obpp; and (d) 

l.Sbpp, by truncating the same pre-coded bitstream

6.7 Conclusions

In this chapter, the scalable texture intra-coding techniques are presented for video objects. After 

reviewing texture coding techniques for video objects, the theory and implementation of 

subband/wavelet analysis are discussed and the shape-adaptive discrete wavelet transform 

algorithms are reviewed. The main wavelet-based texture coding algorithms, such as SPIHT, 

SPECK, and EBCOT algorithms, are discussed, followed by their extension to arbitrarily-shaped 

objects. An improved SA-SPECK algorithm has been proposed that incorporates the context- 

adaptive binary shape coding (CABAC) into the shape-adaptive SPECK algorithm. Extensive 

experiments are conducted to code arbitrarily shaped video object in intra mode. The results show 

that the improved algorithm achieves higher coding efficiency compared with SA-SPIHT and the 

original SA-SPECK algorithm. This algorithm will be employed in the proposed scalable 2D 

model-based texture coding scheme, which will be discussed in Chapter 7.
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Chapter 7

Scalable 2D Model-based Texture Inter­

coding

Excellent compression performance for scalable intra texture coding was exhibited in Chapter 6 . 

However, the intra texture coding scheme can not achieve efficient texture coding of video objects 

because no temporal information is employed. In this Chapter, a scalable 2D model-based texture 

coding scheme is proposed, which is a combination of temporal filtering and the improved shape- 

adaptive SPECK algorithm presented in Chapter 6 .

The designed scalable 2D model-based texture coding scheme possesses the following desirable 

properties:

• Free from DCT blocking artefacts: In comparison to the conventional DCT-based coder, the 

designed scheme incorporates warping motion compensation and wavelet analysis. As a 

result, the reconstructed texture does not show the annoying blocking artefacts at very low 

bit rate video coding.

• Error resilience: Error propagation in the proposed scheme, as well as other scalable video 

coding scheme based on temporal filtering [OHM-2005], is limited by the length o f the 

temporal synthesis filters. This is the advantage of employing temporal filtering technique.

• Excellent compression efficiency: The redundancy in the source video is efficiently reduced 

by temporal filtering with warping motion compensation of video objects. The 

representation of video fixâmes into video objects also improves the motion estimation and 

compensation. The subband correlation can be effectively exploited through the improved 

shape-adaptive SPECK algorithm. The experimental results show that the proposed coding 

system outperforms the nonscalable standard MPEG-4 coder over a wide range of bitrates 

in PSNR performance. Its performance is also comparable to H.264 at very low bit rates 

(<1 0kbits/s).
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• Flexible and highly scalable bitstream: The proposed scalable texture coding system can 

accommodate a wide variety of scalable functionalities utilising the multi-resolution nature 

innate in temporal and spatial subband filtering, and scalable object modelling. Most 

importantly, these desirable scalable features are provided without a significant 

performance loss when compared with H.264, which is commonly seen in traditional hybrid 

coding for scalable applications.

The organisation of this chapter is as follows. Related works on scalable video coding in the 

literature are first reviewed and commented in the next section. The discussion covers the hybrid 

DCT-based scalable video coding systems, wavelet-based scalable video coding systems, and 

motion compensated 3D wavelet-based video coding techniques. The proposed scalable 2D 

model-based texture coding scheme is then presented in Section 7.2, which includes scalable 

motion vector coding and rate-distortion optimised bit truncation. The performance o f the 

proposed scheme is evaluated through extensive experiments, as discussed in Section 7.3. The 

chapter is summarised and concluded in Section 7.4.

7.1 Overview

With the recent expansion of multimedia applications, video coding systems are expected to 

become more flexible. In particular, they should be able to adapt a single video bitstream to 

variable transport conditions (bandwidth and channel error rate) and to varying receiver capability 

and demands (display size, manipulation and applications) as well. Scalability is the expected 

functionality to address this issue. Scalable coding methods allow the decoder to partially decode 

a single compressed bitstream depending on the conditions (bit rate, errors and recourses).

In Chapter 2, much discussion has been conducted for scalable video coding, which has been an 

active research field over the past decade. A scalable stream can offer adaptivity to varying 

channel error characteristics, and different kinds of users. For wireless communications, 

scalability allows the adjustment o f the source rate and the application of unequal error protection 

in response to channel error conditions. For internet transmission, scalability enables variable-bit- 

rate transmission, selective bit discarding, and the adjustment of the source rate to correspond to 

different modem rates, and diverse device capabilities. Scalability becomes increasingly important 

for rich media access from anywhere, by anyone, at any time, with any device and in any form. 

Due to its importance, scalable video coding (SVC) is cunently being intensively investigated
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[MPEG-2003] [RADHA-1999] [MARPE-1999] [SCHA-2000b] [LUO-2001] [LI-2001]

[SCHWARZ-2004]. Some methods have been submitted for the proposals of MPEG-4 Part 10: 

SVC standard. Commonly, these methods can be classified into three classes: DCT-based hybrid 

scalable video coding, wavelet-based scalable video coding, and motion compensated ^ C )  3D 

wavelet-based video coding. In this section, several scalable video coding techniques will be 

reviewed and analysed.

7.1.1 Hybrid scalable video coding

Current standards like H263 or MPEG-4 are based on block DCT in coding of displaced frame 

difference (DFD). In these hybrid coders, scalability is achieved through additional layers of the 

single-scale prediction loop that delivers one base, and one or more enhancement video streams 

[LI-2001] [WU-2001] [SCHA-2001] [SCHA-2002], which is named as Fine-Granular-Scalability 

(FGS). These proposed solutions are not very granular except for the quality (or SNR) scalability, 

as provided in MPEG-4 FGS algorithm [RADHA-1999], where the decoding process can be 

stopped at any point of the enhancement layer. Temporal scalability is obtained at a reasonable 

cost by sending some o f the B and P frames in the enhancement layer, where spatial and SNR 

scalable schemes have a very limited efficiency. Experiments with MPEG-4 and H.263 using 

scalability modes show that generally the coding efficiency would lose 0.5-1.5 dB with every 

layer, compared with a non-layered coding scheme [SCHA-2000b]. It is difficult for these 

schemes to achieve scalability efficiently since there is always a potential drifting problem 

associated with predictive coding [WU-2001].

Recently, the researchers in HHI have proposed a scalable extension of the H.264/AVC video coding 

standard [SCHWARZ-2004]. To achieve an efficient scalable bit-stream representation of a video 

sequence, tiie temporal dependencies between pictures are exploited by using an open-loop subband 

approach. The related temporal analysis-synthesis filter band structure is generalised to facilitate an 

adaptive block-based choice between the motion-compensated lifting representations of the Haar filter 

(uni-directional prediction) and the 5/3 filter (bi-prediction), both coupled with multiple-reference 

frame capabilities. Furthermore, in this metliod, an intra model can be chosen on a block basis to 

efficiently represent blocks that cannot be reasonably predicted using motion compensation. In order 

to provide spatial scalability, a pyramid structure is employed. Although motion compensated 

temporal filtering (MCTF) is independently applied in each spatial layer, a large degree of inter-layer 

prediction is incorporated. Intra macroblocks and residual macroblock representing temporal high-pass 

signals can be predicted using the corresponding interpolated reconstruction signals of the previous 

layers. The motion description of each MCTF layer can be used for a prediction of the motion 

description for tlie following enliancement layers. A remarkable feature of this hybrid scalable video
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coding scheme is that most components of H264/AVC are used, while only a few have been adjusted 

to the motion compensated temporal filtering structure. Experimental results indicate that this hybrid 

scalable coding method is capable of providing a coding efficiency nearly comparable to that of an 

original H264/AVC encoding [SCHWARZ-2004].

7.1.2 Wavelet-based scalable video coding

Another kind of scalable video coding technique is based on wavelet analysis. As we know, 

wavelet transform is an efficient tool for video decomposition, which can pack the energy of 

video into a small set of wavelet coefficients, and lead to a nice scalability. Applications of the 

wavelet transform in video coding follow two paths: motion compensated wavelet residual coding 

[CHENG-1997] [SHEN-1999] [MARPE-1999] [XU-2000] [ASBUN-2000] and 3D wavelet video 

coding [THAM-1998] [KIMB-2000].

In the motion compensated wavelet residual encoder schemes, the current frame is predicted by 

the content from the previous frame, subject to the object motion. The prediction residue is then 

encoded by wavelet encoder. The framework of the coder is very similar to existing video coding 

standards, such as H264, except that the residual frame is encoded using a wavelet-based encoder 

instead of DCT-based encoder [SHEN-1999] [MARPE-1999] [ASBUN-2000]. In [SHEN-1999], 

a scalable adaptive motion compensated wavelet (called SAMCoW) algorithm was proposed, 

which used motion compensation to reduce temporal redundancy. The intra-coded frames (I- 

frames) and the residual frames are encoded using an approach similar to the embedded zerotree 

wavelet (EZW) coder. An adaptive motion compensation scheme is introduced to address error 

propagation problems. This encoder can achieve comparable performance to the more traditional 

hybrid video coders, such as H. 263. The scheme in [MARPE-1999] used a modified block- 

matching algorithm, so called overlapped block motion compensation (OBMC). Like 

conventional block-based motion compensation, OBMC is a very efficient technique for temporal 

predictive coding with the advantage of eliminating blocking artefacts in the prediction error 

signal, which can reduce the efficiency of wavelet-based residual coder. Furthermore, an 

optimisation activity on the wavelet coder is conducted in this scheme to improve the coding 

performance. The experimental results demonstrate that this coder can achieve better performance 

than MPEG4. One of the disadvantages of these motion compensated wavelet residual coding 

schemes is that they can not achieve highly scalable bitstreams.

An alternative to the predictive approaches in various video coding standards is 3D wavelet video 

coding, which has been investigated by several researchers [THAM-1998] [KIMB-2000]. 3D 

wavelet video coding applies wavelet transform both temporally and spatially, and then encodes
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the transformed coefficients using entropy coding [KIMB-2000]. With a proper entropy coding 

and bitstream packaging scheme, the generated bitstream can achieve spatial, temporal, and 

quality scalabilities simultaneously. Experimental results turn out that 3D wavelet-based video 

coding is competitive with standard motion compensated predictive coding schemes. In [KIMB-

2000], Kim reports that their 3D SPIHT coder generates a fully embedded bitstream that can be 

truncated at points and still decodable to the best quality available. On the other hand, the 

straightforward 3D wavelet coding scheme does not use motion compensation to remove temporal 

redundancy. The primary weakness of the existing 3D wavelet video coder lies in the temporal 

filtering. Although the computationally intensive motion estimation is avoided, this makes the 

performance of 3D wavelet video coding very sensitive to the motion. Without motion 

information, motion blur will occur because of the temporal averaging effect of several frames. 

For the video sequence or objects with large motion pattern, the object motion (such as panning 

and zooming) causes the object to be misaligned along the temporal direction, and leads to 

compression inefficiency.

7.1.3 Motion Compensated (MC) 3D wavelet based video coding

For 3D wavelet based video coding, much work has been done to improve the correlation of the 

video signal along the temporal direction, by employing motion estimation/compensation 

[ZHANG-1992] [TAUB-1994] [OHM-1994] [WANG-1999] [XU-2000] [XU-2001]. Taubman 

and Zakhor [TAUB-1994] pan shifted the video sequence before the 3D wavelet transform was 

applied. Ohm [OHM-1994] and Choi [CHOI-1999] incorporated block matching into the 

temporal transform by separately handling the covered / uncovered, connected /  unconnected 

regions, Xu et.al proposed a motion threading (MTh) approach so that the pixels along the same 

motion trajectory are aligned for wavelet filtering [XU-2000], fri this scheme, macroblock-based 

backward motion estimation is performed from the first frame to the last frame. Pixels along the 

same motion trajectory are aligned to form non-overlapped motion threads. Afterward, the shape- 

adaptive wavelet transform is applied along each motion thread. After temporal and spatial 

decomposition, the coefficients are encoded with embedded entropy coding to form scalable 

bitstream. This method outperforms MPEG-4 up to 1.5-2.5dB in those sequences wifti simple 

motion. However, it is about 0.5-1. 8 dB inferior to MPEG-4 in compressing those sequences with 

complex motion [XU-2000].

Recently, the performance o f motion compensated (MC) 3D wavelet video coding (MC-3DSBC) 

has improved greatly due to the use of lifting-based wavelet transforms, which allow for full 

adaptability in the selection of reference pictures, MC mode selection, and advanced motion mode 

for motion estimation [BOTTREAU-2001] [LUO-2001] [SECKER-2001]. Most methods usually
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apply motion compensated temporal filtering (MCTF) combined with a 2D spatial wavelet 

transform. The structure of the MCTF-based encoders enables high flexibility for scalability, i.e. a 

high number of spatial, temporal and quality representations with fine granularity over a large 

range of bitrates. In MCTF, the combination of lifting wavelet filters with motion compensation 

enables an open loop implementation which can also improve error resilience and solve the drift 

problems of the hybrid coding approaches.

Based on the order of the spatial and temporal processing, MC-3DSBC methods can be classified 

into two major classes:

• Class 1; Inter-fram e wavelet (t + 2D). In this class, the open loop MCTF is first performed 

on the temporal axis followed by a 2D wavelet spatial decomposition. So, the original 

frames are first motion compensated with a lifting wavelet transform to exploit the temporal 

redundancy. Note that motion estimation and compensation are performed in the time 

domain. The decomposed temporal frames are then spatially transformed by 2D spatial 

wavelet filters, and the wavelet coefficients are entropy encoded. Several scalable video 

coding algorithms fit well in this category, e.g. [SECKER-2001] [WOODS-2002] [LUO- 

2003] [XU-2004] [CHEN-2004] [WU-2004] [WIEN-2004] [HAN-2004].

/
Temporat.transf()nn: 2D spatiatwavdet 

decomposrtjpn .

€rrtropy coding 

^  Motion b^ing'' ̂

AV- J
Figure 7.1 -  Architecture for the proposed Inter-frame wavelet coders (t+2D).

Figure 7.1 presents the general architecture for inter-frame wavelet coders. In the first step, 

a temporal decomposition of the input video is performed, followed by a spatial 

decomposition of each temporal subband. The motion vectors for each spatial resolution 

level and the wavelet coefficients are then entropy coded.

Although many schemes are based on this architecture, there are some differences among 

them. In [SECKER-2001], motion-compensated lifting steps are used to implement the
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temporal wavelet transform, which preserves invertibility, regardless of the motion model. 

Recently, MC-EZBC scheme proposed by Woods et al [WOODS-2002] has become 

prominent because of its excellent performance. In MC-EZBC, each pair of frames is first 

motion estimated with hierarchical block structure, and then decomposed into a high-band 

fi'ame and a low-band frame by the motion-aligned lift-based Haar filter. MC-EZBC 

efficiently solves the problems in the fi:actional-pel motion aligned temporal transform due 

to the use of lift-based wavelet transform. For example, one of the proposals for MPEG 

SVC is based on MC-EZBC [WIEN-2004]. Within this scheme, the temporal redundancy is 

removed by MCTF with a biorthogonal 5/3 filter pair and a sliding window approach, i.e. 

the temporal filtering is extended beyond the boundaries of the current GOP. The motion 

compensation is performed using variable block sizes, and a rate distortion motion 

estimation and mode decision is performed with the definition of different block-modes and 

a global scene change flag. The precision accuracy is 14 pel and 8 -tap interpolation filters 

are used. Motion vector data is encoded employing median prediction and Context Adaptive 

Binary Arithmetic Coding (CABAC) [MARPE-2003]. In order to reduce the blocking 

artefacts caused by the block based motion compensation, a deblocking filter is applied at 

the decoder side at each resolution level. Its filter design is similar to the in-loop deblocking 

filter in H.264/MPEG-4 AVC [H264-2003]. After the temporal processing, the MCTF 

prediction error is spatially decomposed using 9/7 Daubechies wavelet filters and entropy 

encoded using Embedded Zero Block Coding (EZBC) [HSIANG-2001]. The EZBC 

technique provides a high granularity for SNR scalability. The weak point of the scheme in 

paper [WIEN-2004] is the absence of motion scalability and object scalability.

Luo et al [LUO-2003] proposed an advanced MTh technique, trying to improve the method 

in [XU-2000] by continuous threading a bi-directional alignment. In this method, block- 

based motion estimation is first performed between pair of adjacent frames. According to 

the motion vectors of the blocks they belong to, pixels along the same motion trajectory are 

linked into motion threads. In this method, an R-D optimized technique is introduced to 

estimate motion vectors and select proper prediction modes for each block. Promising 

experimental results have been demonstrated that this method can be competitive with the 

state-of-the-art H.263 video standard on coding efficiency. The advanced MTh technique 

has been further improved and submitted as a MPEG-21 SVC proposal [XU-2004], which 

employs a Barbell lifting implementation of the wavelet transform. Within this technique, 

both the prediction and the update step of the lifted wavelet transform are modified. In the 

lifting stage, each output coefficient is calculated fi-om a set of pixels in each input firame, 

instead of using a single pixel value. The correspondence from the set of pixels to the single 

coefficient is established by linear functions. They minimize the amount of energy in high-
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pass frames and remove ghosting artefacts from the low-pass frames. They are also 

responsible to follow the motion trajectoiy in an efficient way, i.e. to perform motion 

compensation between frames that belong to a Group of Pictures (GOP). Both 

unidirectional prediction, equivalent to an extension of Haar filtering, and bidirectional 

prediction, equivalent to 5/3 filters, are supported and a method to adaptively choose the 

best option is also proposed. The motion compensation supports adaptive block size (similar 

to H.264/MPEG-4 AVC), overlapping block motion compensation (OBMC) and % pel 

precision for motion vectors. The motion vectors are encoded in an embedded bitstream, in 

a coarse to fine fashion, i.e. the motion information is scalable, and the bit budget allocated 

for motion vectors at each layer can be adjusted according to the target bit rate and spatial 

resolution. After temporal filtering, the wavelet coefficients are encoded using a 3D variant 

o f the EBCOT algorithm [TAUB-2000], already used in the JPEG2000 standard to provide 

SNR scalability. The advantages of this method are the 3D EBCOT engine, and the motion 

compensation tools with scalable motion vectors.

For this class of coding architecture, experimental results obtained with SNR-scalable 

MCTF video coders suggest that this architecture can be comparable or superior in rate- 

distortion terms to an optimised non-scalable coder that uses the closed-loop structure 

[CHEN-2004].

Class 2: In-band MCTF (2D + 1). For the methods of this class, spatial transform precedes 

temporal filtering. As a result, the application of temporal prediction and temporal update of 

the lifting decomposition occurs in the wavelet-domain. In this approach, each video frame 

is first spatially decomposed into multiple bands using a 2D wavelet spatial decomposition 

and then the temporal correlation for each band is removed using MCTF. Typically, a 

complete to overcomplete wavelet transform (CODWT) is used [PARK-2000] to improve 

the performance of the motion compensation in the wavelet domain. Examples of scalable 

video coding methods following this architecture are included in papers [BOTTREAU-

2001] [ANDREO-2002] [TUBARO-2004] [VIERON-2004] [BAUD-2004].

Figure 7.2 shows a general architecture for the in-band MCTF coders. In this scheme, the 

2D spatial wavelet decomposition is performed before temporal filtering, and motion 

estimation and compensation is achieved in the subband domain. However, since the spatial 

wavelet transform used is not shift invariant, i.e. spatial shifts of 1 pixel in the time domain 

can not be translated directly in the frequency domain, an overcomplete wavelet 

representation is used, which is achieved by a CODWT tiansfbrm.
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In [BOTTREAU-2001], a fully scalable 3D subband video codec is presented. The 

proposed codec is based on 2D+t subband decomposition. In this codec, groups of frames 

are first temporally filtered using motion compensation and then spatially decomposed with 

wavelets. The spatial-temporal coefficients are further scanned and compressed using a new 

SPIHT-like strategy, together with arithmetic encoding, which provides a combination of 

temporal, spatial and SNR scalability.

^  A A A

2D spabal wavelet 
decomposition CODWr -Kj Temporal transform; 1— \  

Ÿ  MCTF based W

Motion E^mation

Entropy Coding 

(̂  texture coding ^ ----- /

(  Motion codfog ^

r
Figure 7.2 -  Architecture for the In-band MCTF coders (2D+t).

In [ANDREO-2002], the proposed framework applies the in-band MCTF (IBMCTF) after 

the DWT is performed in the spatial domain. To overcome the inefficiency of MCTF in the 

critically-sampled DWT, a complete-to-overcomplete DWT (CODWT) is performed. 

Furthermore, in order to improve the efficiency of motion compensation, an algorithm for 

optimised multi-hypothesis temporal filtering is also proposed. Experiments show that the 

proposed in-band MCTF equipped with multi-hypothesis prediction and update is 

comparable to the method o f class 1 in coding efficiency over a large range of bitrates under 

the same experimental conditions. The in-band structure additionally permits the 

independent temporal filtering of each resolution of the input content, which enables many 

potential developments for multi-resolution decoding.

The in-band MCTF ( I D  + / ) approaches present the potential advantage of adaptive tuning 

of the lifting decomposition across resolution levels according to different criteria for 

complexity, coding efficiency and scalability, something that is not possible with the 

conventional t + 2D approaches. However, the disadvantage o f {2D + t )  approaches is 

their limited performance, ranking in the last positions for both scenarios during the MPEG- 

21 SVC evaluation [ASCENSO-2004]. Further investigations and developments are
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probably required in order to obtain, with a { ID  + t)  approach, results comparable to those 

obtained with the other techniques.

7.2 System description of scalable 2D model-based texture coding

In this section, a scalable 2D model-based texture coding scheme is discussed for arbitrarily 

shaped video objects. In order to improve the efficiency of temporal prediction, in the proposed 

scheme, motion compensated temporal filtering (MCTF) is employed, which is similar to MC- 

3DSBC of class 1. However, the proposed scheme has the following differences compared to the 

above reviewed methods:

• Mesh-biased motion estimation is conducted instead of block-based motion estimation. 

Currently, most motion compensated 3D wavelet video coding techniques are based on 

block-based motion estimation and 3D-DWT coding structure, which suffers from the 

appearance of the so-called “disconnected” pixels occurring in the areas not conforming to 

the rigid translation model and in occluded/exposed areas [OHM-1994]. Many measures 

have been proposed to reduce these effects, such as deblocking filtering [WIEN-2004] and 

overlapping block motion compensation [XU-2004]. However, these effects still exit for 

very low bit rate coding. Mesh-based motion compensation can overcome above 

disadvantages due to the existence of unique trajectories (i.e., one-to-one correspondence 

between all positions in analysed frames).

• Motion compensation is conducted in the object domain, instead of the frame domain. As 

the video frames are represented into video objects, the effects of motion discontinuity 

between different video objects on motion compensation are reduced.

• Rate-distortion optimised rate control is achieved easily among video objects and frames. 

During the motion estimation of layer i , the encoding rate for motion vectors and the

motion compensation error D^^j are recoded. At the same time, during spatial bit-plane

coding, the encoding rate Rjpah-aij and approximation error D̂ p f̂i^jj of bit-plane J  are also

recoded. All of this recoded rate-distortion data is used during the final bit packetising step 

to achieve optimal bit allocation among video objects, and among object motion and 

texture.

Figure 7.3 shows the general structure for scalable 2D model-based texture coding scheme. This 

scheme assumes that the video frame has been segmented into several video objects with different
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motion patterns. It is also assumed that object shape and model have been encoded. The detailed 

description of the proposed scheme is included in the following sections.

Scalable model and shape coding

I Object Modelling

Input
v i d e o  ^ je a m en ta tio ^  T objects

Input video Output

Bitstream

Video
Packetizing

Rate-Distortion Optimiser

ME

Mesh-based Temporal 
filtering

Scalable motion 
vector coding

Spatial analysis and shape 
-adaptive bit-plane coding

Figure 7.3 -  General structure of the proposed 2D model-based texture coding scheme 

7.2.1 MC-based lifting scheme for temporal filtering

During the initial research on incorporating motion information into the 3D wavelet video coding 

[TAUB-1994] [OHM-1994] [HSIANG-1999], filter bank-based filtering is employed during 

temporal filtering. However, in these approaches, neither the perfect reconstruction can be 

achieved, nor the motion accuracy is sufficient. The tight coupling between the temporal 

transformation and the motion models also hampers the use of wavelet kernels other than the Haar 

wavelet in the temporal domain.

In 2001, several papers have been published independently on the temporal DWT through lifting 

scheme [SECKER-2001] [LUO-2001] [BOTTREAU-2001]. In these papers, the lifting realisation 

of temporal DWT with motion compensation applying along the lifting steps has been 

investigated which can achieve perfect reconstruction for temporal filtering and can also achieve 

arbitrary motion accuracy. Therefore, in our proposed scalable 2D model-based texture coding 

scheme, the lifting implementation of DWT has been applied during temporal filtering, which is 

discussed in details in this section.

In Chapter 6 , lifting scheme for DWT has been discussed in detail. The diagram of the lifting 

scheme for temporal filtering is the same as that in Figure 6.3. Let be a video signal with

the spatial coordinate X  = and the temporal coordinate k  . The prediction operator P̂ aar

and update operator for the temporal decomposition using the lifting representation of the 

Haar wavelet are given by
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/’tf„<.rW-^.2t + l])=s[X,2*] (7.1)

= (7.2)

where h[X,k] = s [ x , 2 k P f f ^ ^ ^ { s [ x  ,2 k + l ] ) . (7.3)

For the 5/3 transform, the prediction operator P5 / 3  and update operator c/5 / 3  ^re given by:

P5 / 3  (î[A- ,2à: + 1]) = - j  (s[X ,2*1 + i  [X ,2* + 2]) (7.4)

l/5 „(4 A -,2 i]) = l(/i[X ,< :] + /i[A -,* -l]) , (7.5)

where /z[%,A:] = j[%,2A: + 1]- + l]). (7.6)

In the proposed scheme, the lift-based 5/3-filtering structure is employed to achieve temporal 

filtering.

Lo #  R * o
- b  - a
------------------ S #  R x ,
—b — a

H . # e — ^ rx3

(a) (b)

Figure 7.4 -  Forward and inverse lifting wavelet and the elementary lifting operations (circled in

the forward lifting)

Figure 7.4 illustrates a sample of one-level bi-orthogonal 5/3 lifting wavelet. The original data 

xq, JCj, ..., is input at the left, while the decomposed wavelet coefficients are output at the 

right two columns. It is observed that the wavelet coefficients are calculated through two stages of 

computation. The two-stage lifting process can be formulated as follows:
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With normalisation, the lifting calculation is equal to the traditional bi-orthogonal 5/3 convolution 

kernel:

^2/+l + ^ 21+2 )
V

f3  1 1 ^
4  = V 2  — X 2 1  +  — X (% 2,-l +  -«2j + l ) - - X  (^ 2 /-2  +  ^ 2 i+ 2 )

Circled in Figure 7.4 (a), the elementary lifting operation unit involves only tiiree nodes, the 

updated value can be saved in the same memory of the original pixel, which is called in-place 

calculation. Each elementary forward lifting unit can be straightforwardly inversed to an inverse 

lifting unit. The inverse wavelet lifting structure is shown in Figure 7.4 (b).

Within the temporal lifting structure, the frames go through the lifting stages step by step. The 

calculation process first upgrades the odd frames to the high pass wavelet coefficient frames, and 

upgrades the even frames to the low pass coefficient frames. For each pixel or patch in the odd 

frame, motion estimation is conducted to find the corresponding pixels and patches from its left or 

right frame, or both frames.

Figure 7.5 shows the lifting-based 5/3 wavelet temporal filtering structure [LUO-2003], where 

each column is a frame and each block represents a pixel. Block-based or mesh-based motion 

estimation is always from an odd frame to an adjacent even one. For the pixels in the odd frame, 

motion compensation is conducted to find their corresponding matched pixels in their 

neighbouring even frame or frames. Some criteria can be used to decide whether the pixels are 

predicted from one frame (forward or backward prediction) or from two frames (bi-directional 

prediction). For the pixels which have corresponding matched (one or two) pixels in the 

neighbouring frames, lifting step is employed to get the high-pass part. If no pixel matches this 

pixel, intra-prediction is conducted. Following the lifting step, update step is conducted for the 

even frames. The pixels which are originally terminated in many-to-one mapping can continue the 

temporal filtering without being stopped, as shown in Figure 7.5. Within the elementary lifting 

operation, the original terminated pixel in Frame; can be upgraded using both its left and right 

matching pixels instead of being stopped at the right side. When the anchor pixel in Frame% is to 

be lifted, though many pixels in Frame, are pointing to it, it is only calculated with the first
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scanned one according to the motion scan order. For a non-referred pixel in an even frame, it is 

still linked on both sides using the motion vectors of the adjacent motion threads. It is very easy to 

generate the invertible fractional-pel accuracy motion threading with lifting structure. As 

indicated with the dashed arrows in Figure 7.5, all the motion estimation directions are from an 

odd index frame to an even one, either forwardly or backwardly. An elementary temporal lifting 

operation can be regarded as a bidirectionally motion compensated prediction process among 

three consecutive frames.

Frame 0 Frame i ^ Frame2 \
Onginal Many-to-one 

terminated mapping Non-referred

Frame n-1  Frame n

Time

Figure 7.5 -  Lifting-based temporal filtering based on bi-directional motion search [HJO-20031

Figure 7.6 illustrates a first-stage elementary lifting operation in which frame Fin+i is lifted to a 

high pass coefficient frame. The solid curve with arrow represents the pixel motion vector 

generated from the block motion estimation, and the dashed curve represents the pixel motion 

vector which is directly inversed from the solid one. As shown in Figure 7.6, in this lifting stage 

where frame F2 „+i is to be upgraded to a high pass frame, if pixel X] in frame F2„+i refers to the half 

pel between x, and X2 in F2 „, then in the next lifting stage where F2 n is to be upgraded to a low 

pass frame, X2 in F2„ will accordingly refer to the half pel between X2 and X) in F2n+i. In other 

words, the counterpart motion vectors are strictly kept with inverse direction. The quarter-pel 

operation resembles the sim ilar method. Based on the elementary lifting operation, the reference 

frames in each lifting stage can be reproduced in the decoder side, thus the perfect reconstruction 

of the wavelet synthesis is guaranteed.
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Many algorithms have employed the lifting scheme for temporal filtering [SECKER-2001] [LUO- 

2003] [XU-2004]. However, the difference of the proposed scalable 2D model-based texture 

coding from these methods is that warping motion compensation is applied instead of block-based 

motion compensation. Warping motion compensation using scalable object mesh model will be 

discussed in the following sections.

Fwd ME Bwd ME

Integer pixel 

Quarter pel 

H alfpel 

Quarter pel 

Integer pixel 

Quarter pel 

H alfpel 
Quarter pel

Integer pixel 

Quarter pel 

H alfpel 

Quarter pel 

Integer pixel

F2n

Figure 7.6 -  Quarter-pel elementary lifting operation

7.2.2 Warping motion compensation using object mesh model

Block-based motion compensation (MC) for temporal filtering has some inherent effects that can 

degrade the visual quality of decoded video sequences. One of the effects is blocking artefacts, 

which are clearly related to the use of block-based MC. If the object motion cannot be represented 

properly by the block-based motion model, motion-compensated images tend to have a visually 

noticeable block structure. Following the perfect reconstruction property of the lifting scheme, the 

block structure of the temporal subband frames can be compensated at the high bit rate. However, 

when employing a coarser quantisation at lower rates, the block structure becomes visible in the 

reconstructed frames.

In order to mitigate blocking artefacts, a deblocking mechanism can be applied during 

reconstruction and can be incorporated into the MC-based temporal lifting scheme. For example, 

in [XU-2004], overlapped block motion compensation (OBMC) is adopted to improve the
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performance of motion compensation. Alternatively, warping motion compensation can be 

employed [HEIS-20011. In the proposed scheme, warping motion compensation is employed 

during temporal filtering. Furthermore, as the video frames have been segmented into several 

video objects, different warping motion compensation schemes have been employed for different 

video objects.

To help matching every pixel in the target video object, a pre-processing step of padding is 

applied to the reference video object planes (VOPs) prior to warping motion estimation and 

compensation for arbitrarily-shaped video object. The boundary pixel padding technique in 

MPEG-4 has been employed in the proposed scheme [MPEG4-2001]. Only the pixels of the 

current VOP are considered for matching in motion compensation.

7.2.2.1 Temporal filtering of foreground objects using context-adaptive scalable model

Temporal filtering of foreground objects consists of two basic steps: scalable model track ing and 

model refinement

• Scalable model tracking: the scalable model is tracked along the video frames, from the 

highest temporal layer to the lowest temporal layer, as shown in Figure 7.7.

Highest layer

3rd layer

2nd layer

I 
I

0 1 2 3 4 5 6  7 8
GOP k-1 GOP k GOP k+1

Lowest layer

Figure 7.7 -  Scalable model tracking along the video frames for video object
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For the foreground objects, a context-adaptive scalable mesh model is used during temporal 

filtering for motion compensation, which is designed through the algorithms discussed in 

detail in Chapter 5. The advantage o f using a context-adaptive scalable mesh model is its 

high efficiency in representing the object motion. However, compared with the regular 

triangular mesh model [WANG-1994a], content-adaptable scalable models require more 

computation during model design. Furthermore, more bits are required to compress these 

models. In order to reduce the complexity and coding bits in the proposed scheme, only the 

scalable models of the foreground objects in an “I-ffame” are designed and compressed. For 

the other frames, their scalable models are achieved and updated through tracking. As the 

object shape has been encoded before texture coding, only the interior vertices of object 

models need to be tracked.

The detailed tracking algorithm is presented as follows, which is similar to the proposed 

model evaluation algorithm in Chapter 5:

1 Foreword / backward motion estimation of video object jfrom two frames

In order to estimate the motion of video object, a number of feature points are selected 

in the interior of object, which may be different from the interior vertices of the object 

model and have good features for tracking [SHI-1994]. Then, both forward and 

backward motion vectors of these points between frame /(3c, f - l )  and frame /(3c, f) are 

estimated using Shi-Tomasi feature tracking algorithm in [SHI-1994], which is 

indicated by F) and , respectively.

2 Reliability evaluation

The “reliability” of the estimated motion vectors is evaluated based on both forward 

and background motion vectors through Equation (3.3) in Chapter 3 (page 55). The

smaller the difference between and iK , the more reliable the motion vector of i th

node.

3 MV prediction of model vertices

After achieving the motion vectors of interior feature points, the motion vectors of 

model vertices are predicted from their in nearest surrounding motion vectors, in is 

chosen as 6  in our experiments. The weighted least squares (WLS) estimation in
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[ROUSS-1987] is also used to determ ine the affine parameters of motion for the control 

points. During estimation, each motion vector is weighed according to its “reliability”.

Unlike the model evaluation algorithm in Chapter 5, the proposed model tracking 

algorithm does not include object model refinement by iterative hexagonal matching 

algorithm in [NAKAYA-1994]. A more detailed scalable model refinement step will be 

introduced in the lifting step of temporal filtering.

Scalable model refinement: The scalable model is refined during the lifting step, from the 

lowest temporal layer to the highest temporal layer, as shown in Figure 7.8.

Highest layer

3rd layer

2nd layer

Lowest layer

I

I
I

I 
I 
I

I

1 1

0 1  2 3 4 5 6 7 8

GOP k-1 GOP k GOP k+1

Figure 7.8 -  lifting-based temporal filtering process

Even though the motion of the object model can be derived from above tracking algorithms, 

the motion vectors obtained are not optimal due to the update process of the low-pass 

frames in the lifting scheme. For example, during temporal filtering of the 2"̂ * layer shown 

in Figure 7.8, Frame 2 and Frame 6 are first predicted from Frame 0, Frame 4 and Frame 8 

as the high-pass temporal frames. Then, Frame 0 and Frame 4 are updated. Due to the 

updating step. Frame 0 and Frame 4 are different from those in Figure 7.7, thus the tracked 

scalable model is not optimally related to the updated frames. Therefore, a refinement step 

is needed in order to get the optimal motion vectors corresponding to the object model.
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Due to the object motion, some pixels of the object have just one correspondence from 

either left or right frame. These pixels can be considered as the original terminated pixels, 

as shown in Figure 7.5. For example, some newly-appeared pixels in frame n can only be 

estimated from frame n + \ , as shown in Figure 7.9. Therefore, during model refinement, 

optimal prediction model (Bi-directional, Uni-left, or Uni-right models) is also decided. In 

the proposed scheme, the optimal prediction model is object-based, instead of block-based, 

due to the warping motion compensation.

The motion estimation is optimised under rate-distortion criteria, which are shown in 

Equation (7.9), (7.10) for different estimation model.

For Uni-left and Uni-right model, the motion vectors are optimised subject to:

=  arg min
MVjeSRj

E  I B{p)~  M c [ A a . , M V j  )[/;) I +  ̂ . M V j  ) (7.9)

For Bi-directional model, the motion vectors are optimised subject to:

MVT
= arg nun 

My/eSR, 
MVĴ SR,

B{p)-^ [mc[a, . , MVj \p) + A/cU, , MV/ ))(p]j

+ .mv/ }

I
psNRj

(7.10)

Frame n-1 Frame n Frame n+I

(A) (B)

Figure 7.9 -  Illustration of video object along the three consecutive video frames

In Equation (7.9) and (7.10), B and Aj {d g {r,/}) are the current frame and reference 

frame during motion compensation, respectively, p  is the pixel located in the neighbouring

region NR^ of current vertex, as shown in Figure 7.10. MV°^' and MV^^' are the final 

estimated motion vectors from the right (forward) and left (backward) motion estimation
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process respectively. , M F /) is the result of warping motion

compensation process of current frame, given the reference frame and motion vectors of 

model vertex and its neighbouring model vertices. ,M V j)  is a bit rate term

representing the expected number o f bits for encoding the motion vectors M F/ given its 

neighbouring motion vectors. The search region SR^ can be adapted depending on the 

temporal layer.

Figure 7.10 -  Illustration of neighbouring region NRj and search region SRj of model

vertex

To approximate the optimal solution for the two-dimensional optimisation problem given in

Equation (7.10), we first optimise MF) using one dimensional optimisation. We then fix

MF, and optimise MF). . By subsequently fixing MF), and re-optimising MV, , this

process can be iteratively continued. During the iteration process, the positions of its 

neighbouring vertices are fixed. After the above refinement, the rate-distortion optimised 

motion vectors are achieved and will be compressed by using the scalable coding method 

presented in Section 7.2.3.

1.2.2.1 Temporal filtering of background objects using an adaptive quadrangular mesh 

model

For the background object of the video frame, it is assumed that only simple motion occurs. 

Therefore, the simple scalable quadrangular mesh model is employed, instead of context-adaptive 

scalable model. One of the advantages of using such an adaptive model is that it need not be 

compressed and transmitted to the decoder. Furthermore, less computation is required to build the 

adaptive quadrangular mesh models of the background objects.
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Current frame

■ Previous frame

MVi

MV|

(b)(a)

Figure 7.11 -  Warping motion compensation and motion vector interpolation, (a) Warping motion 

compensation and (b) Motion vector interpolation

Figure 7.11 illustrates warping motion compensation (MC) using quadrangular meshes. During 

motion estimation (ME), the positions (or motion vectors) of the grid points in the previous frame 

are optimised to reduce the warping error between the current frame and the previous frame. It 

can be achieved through the iterative hexagonal matching algorithm in [NAKAYA-1994]. For the 

points inside each quadrangle, the motion vectors (MV) are linearly interpolated from the four 

MYs of the surrounding grid points.

As we know, the drawback of warping MC technique is that it suffers from strong inhomogeneous 

motion, e.g. very fast moving objects [OHM-1996], leading to “warping artefact”. Even though 

motion discontinuities are reduced through the representation of video frame into objects, 

overlapped block motion compensation (OBMC) and an adaptive quadtree grid with variable 

density according to the varying motion activity are investigated and incorporated into the 

proposed scheme in order to further improve the performance of motion compensation.

OBMC can achieve better prediction by means o f a superposition of overlapped displaced blocks 

from the reference frame, each weighted by a smooth cosine window [HEIS-2001]. According to 

Figure 7.11, the background object of current frame k  is divided into squares of 16 by 16, thus 

obtaining a regular grid. A dense motion vector field is achieved by using bilinear geometric 

transform which smoothly varies over the image. The motion vector MVi of point (i,y) inside a 

square block is interpolated from the four surrounding control point motion vectors M Fj, ..., 

MV^ using the equation (7.11):
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MFf =
'dxi' 'dxi'

,4X1,
\?i - •  J 'l)+  , w  • y i )

+ (l-x ,- - y ^  +Xi - y, ) (7.11)

( x i - X i - y i )

where jc,- = —— — , y^ = —— ^  
^ 1 - ^ 0  yi~yo

(7.12)

and %Q, y^ are the coordinates of four surrounding points, as shown in Figure 7.11 (b).

This warping prediction leads to a motion vector field without motion discontinuities. For high 

motion part of background, in order to combat the motion discontinuities, overlapped block 

motion compensation is employed by superimposing four predicted intensity values using 

nonlinear weighting functions W], W2 , and w^.

M

p̂‘r-(ÿi-!èi-ÿ,hp‘nxi-y,)
+  ■ (l -  xi -  y f  +  Xi ■ y  I )

(7.13)

where

1-COS

.  1 
y i - - l _ c o s U . ^ ^

3̂1 -y o  ) )

(7.14)

(7.15)

(7.16)

Thus, the four predicted values and are computed by employing

the translational motion model with one of the motion vectors of the four surrounding vertices for 

each prediction.
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In order to further improve the motion prediction and achieve scalable coding, an adaptive 

quadtree grid is employed. In contrast to the method in [HUANG-1994] which uses the local 

variance of a given frame difference as a criterion to decide whether block should be split into 

smaller one, the splitting in our proposed scheme is based on the rate-distortion criterion. 

Commonly, the use of a regular grid of block size 16x16 pels imposes a severe constraint on the 

motion model in highly active and quasi-stationary regions. In order to adapt the motion model to 

such kind of scenes, an irregular grid is employed with block sizes of 16x16 and 8x8 .

As shown in Figure 7.12, the control points (CPs) in the grid are classified into three types: coarse 

grid CP, fine grid CP and boundary vertex (BV), They are defined as follows:

• Coarse grid CP: Control points located at the 16x16 grid, which can move freely.

• Fine grid CP: Control points located at the 8 x8  grid, which can move freely.

• Boundary vertex (BV): control points located at the 8 x8  grid and forming a T-

shaped connection with coarser grid CP and fine grid CP. Its motion vector is just 

bilinearly interpolated from the MYs of neighbouring CPs and hence need not be 

transmitted.

fram e k-1 fram e k

(b)

#  c o a rse  grid CP (16x16) ' A  fine grid CP (8x8) ■  bound  vertex (SV) (8x8)

Figure 7.12 -  Description of hierarchical control grid interpolation

Iterative hexagonal matching algorithm in [NAKAYA-1994] is used to estimate and refine the 

motion vector of the control points. It includes the following steps:

• Motion vector of control points on the grid of size 16x16 is obtained.

• Rate-distortion theory is applied to decide whether the 16x16 block should be split 

or not.

• If the decrease of MSB of 16x16 block is larger than.^^^^" • r {ùM V )  , the block is

split and a fine grid CP is inserted. Otherwise, it is not split.
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For background objects, only Bi-directional prediction is employed. That is, during the motion 

estimation, two motion vectors are estimated for every control point (vertex of a square) from the 

adjacent frames, based on rate-distortion criterion. That is, a Lagrange multiplier is used to 

choose the best control point motion vector, considering the prediction error and the local motion 

vector variance between the candidature vector {m V/,MV j )  and the eight motion vectors 

Neighbor̂  neighbouring control points, which is similar to equation (7.10).

To estimate the motion vector of the vertex, the motion vectors of its eight neighbouring control 

points are fixed and only the motion vector of the centre control point is changed. Because of their 

interdependence, the motion vectors are iteratively refined. During the iteration, the control points 

are scanned from top left to bottom right of the image. The estimated MVs of the quadrangular 

mesh model, together with the overall structure of the grid described by a quadtree, are encoded 

progressively, which will be discussed in Section 7.2.3.

7.2.3 Scalable coding of motion vectors

Before scalable coding of motion vectors for foreground and background objects, the scalable 

mesh structure of video object is compressed. The detailed technique for the compression of 

scalable mesh model has been discussed in Chapter 5, which also indicates the scanning sequence 

and layer information of vertices. Based on the frame prediction model, such as bi-directional, 

uni-left, and uni-right prediction model, one or two motion vectors are needed for every vertex of 

an object model. For background objects, the overall structure of a hierarchical grid can be 

described by a quadtree [HUANG-1994]. In this section, motion vector prediction is discussed, 

followed by scalable motion vector coding.

7.2.3.1 Motion vector prediction

For the motion vector prediction of the foreground objects, the motion vector prediction method is 

similar to the prediction method for scalable model compression discussed in Chapter 5. For the 

vertices in the first layer, motion vectors are predicted from the preceding vertex based on the pre­

decided connectivity during scalable model compression. For other layers, the motion vector of 

the vertex is predicted from its two neighbouring vertices of the current layer and/or the 

previously coded layers, according to the pre-determined connectivity information.
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The motion vector prediction of background objects is different from that of foreground objects. 

The scanning sequence during motion vector prediction is from upper left to bottom right. Based 

on the hierarchical control grid in Figure 7.12, the motion vector of the vertex in current layer can 

be predicted from the neighbouring vertices o f the previously encoded layers and the vertices the 

current layer which have already been encoded, as shown in Figure 7.13.

Assume that the fine grid control points (CPs) belong to a different layer from the coarse grid 

CPs. The coarse grid CP is predicted from its neighbouring encoded vertices, as shown in Figure 

7.13 (a). For example, CP^ is predicted from Cf), and CP^. The fine grid CP is predicted from its 

neighbouring coarse grid CPs, neighbouring bound vertex, and encoded fine grid CPs. For 

example, in Figure 7.13 (b), fine grid CPg is predicted from CP^, CP^ and CPy. While fine grid

is predicted from CPg, CP^ and C/} . As the motion vector of boundary vertex (BV) is

bilinearly interpolated from the MVs of neighbouring CPs, it need not be compressed and 

transmitted to the decoder.

c

H
f  1

; -v :^

(a)

a À C

,h: ■ ' 
. 1

*■. J

•  c o a rse  grid CP (16x16) A  fine grid CP (8x8) ■  • bound  vertex (BV). (8x8)

Figure 7.13 -  Illustration of motion vector prediction for a background object

V.2.3.2 Scalable cod ing

In MPEG-4 and H.263, the differential MV components are encoded using adaptive arithmetic 

coding (AAC), described by Witten et al [WITTEN-1987], hi these standards, one probability 

model is used for all the motion vector symbols in a given frame and updated adaptively at the 

encoder and decoder. As the number o f symbol increases, this scheme faces the zero frequency 

problem, i.e. even the unused symbols must be assigned some initial probability.

In order to improve the coding efficiency o f MV prediction errors, H.264 adopted context- 

adaptive binary arithmetic codec (CABAC) [H264-2003], which is also employed for scalable
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motion vector coding of our proposed scheme. This method consists of two steps: binarization and 

binary coding. In the binarization step, each motion vector symbol is represented by a unique 

binary pattern as shown in Table 7.1. The resulting code words are then encoded using a binary 

arithmetic coder and context model according to Table 7.2.

Table 7.1 -  Binarization of motion vector prediction residual component

Prediction residual component Binary code

0 1

+/- 0.25 0  1

+/-0.5 0 0 1

+/-0.75 0 0 0  1

Bin number 1 2 3 4 5  .......

Table 7.2 -  Bin numbers and corresponding context number for binarised residual motion vector 

components

Bin number Context number

1 CTX^{dE)&{a,\,2)

2 3

3 4

4,5 , 6 , . . . 5

Sign 6

Motion vector differences are prediction residuals, for which a context model is established in 

CABAC that is based on the local prediction error. Let mvd{X,cmp^ denotes the value of a 

motion vector difference component of direction cmp e  {horizontal, vertical), Then, the related 

context for encoding the first bin is determined by its preceding neighbour (for layer 0 ) or 

neighbours (for other layers). Three different context models CTX^{dE)  are selected depending 

on the motion vector residuals of the neighbouring control points, which have been scanned and 

encoded. Let c e  {x,y} denote the vector component. Then, CTX^{dÉ) is defined as follows:

CTX^(dE) =

0, e^{dE)<2

1, e^{dE)>^
2 , else

(7.17)
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where e{dE)=Y\dAi\ and i is the number of its neighbours.

7,2.4 Rate-distortion optimised bit stream truncation

After temporal filtering of arbitrarily shaped video object, scalable motion vector coding is 

conducted using the method in Section 7.2.3, and the residual texture images are encoded by the 

improved shape-adaptive SPECK algorithm which has been discussed in Chapter 6 . After the 

encoding process, the compressed bitstream can be further truncated at a later stage to form a fully 

scalable bitstream in the temporal and quality level.

In the proposed scheme, rate-distortion optimised bit truncation scheme used in JPEG2000 

[JPEG-2000] has been extended to decide the optimal truncation points o f the bit stream. Based

on the rate distortion data of all video objects and the given available bit rate, the optimal

truncation points can be decided within each GOP. During temporal filtering, the warping error

Djdmv and the expected number o f bits for object i in motion layer of frame I are

recoded. At the same time, for residual texture bit-plane coding, the coding rate and

distortion for object i in bit plane of frame I are also recoded.

Based on rate-distortion theory, the coding performance of each video object i (including motion 

and residual texture for video coding) is characterised by a rate-distortion curve. Therefore, 

optimal trade-off between rate and distortion can be achieved by minimising:

+ A , X ' }  (7.18)
I I i J

where j  g and is selected fi-om the candidature truncation points. Lagrange parameters

{Ay J  are chosen for all temporal frames and video objects. If only one frame is encoded and each

block is considered as one video object. Equation (7.18) can be simplified as the rate-distortion 

optimisation criterion used in EBCOT algorithm [TAUB-2000].

Given a specific bit-rate R,„ ^ , the objective of bit truncation is to find the optimal truncation

point so that ^m ax  > construct a bit stream that satisfies the bit-rate constraint and
I i J

with minimal distortion. Before deciding the optimal truncation points, we should select the
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candidature truncation points so that we can find a convex hull of the R — D curve. The 

truncation can only take place at these candidate truncation points so as to guarantee that at every 

truncation point, the bitstream is rate-distortion optimised. For object i , the end of each MV layer 

is the feasible truncation points followed by the feasible truncation points that are located at the 

end of each coding pass for texture coding.

Let y’o < y'l <••• < 7jv-i be an enumeration of these feasible truncation points for object i in frame 

/ ,  where { / o a n d  {jk+\Jk^2r" , jN~\]^jsp-  Let the corresponding distortion 

rate “slope” be given by:

5 /* =ADÂ /AR/*-> (7.19)

where M /*  =iî/*  and AD/* =D/*-' - D / * .

Evidently, the slopes must be strictly decreasing. If 5'/*+* ^  5'/*, the truncation point could 

never be selected as the candidature truncation points. After selection, the number of candidature 

truncation points is N\  .

After determining the candidature truncation points for all video objects and all frames within 

current GOP, the determination of optimal truncation points n,- = }, for any given

A| , may be performed very efficiently. Due to the restriction of the set of candidature truncation 

points whose slopes are strictly decreasing, the algorithm for determining optimal truncation 

points is reduced to the selection of n,- so that its component

n\ =max][/yt G n I 6:̂ * > a}, and 0 < K . (7.20)

Suppose there are 0  objects in the frames and K  frames in cunent GOP. Then, the detailed 

algorithm for determining truncating points is described as follows:

1. Construct the rate vector R = | 0 < z < D, 0 ^  / < AT, 0 ^  y < Vy} and slope vector

S  = I 0 ^  z < 0 , 0 ^  / < 4 ,̂ 0 ^  y < Vy I for all candidature truncation points. Therefore,

O - l K - l  ,
for rate and slope vector, there are in total N  = H blj elements.

1=0 /=o
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2. Rank the elements of 5 = |  and adjust the element sequence of rate vector

correspondingly so that ^  and Sj_^<Sj< Sj^^ ,  The

corresponding rate vector is R = {Rq , • * ■, Ry_i, R j , Rj+i * • •, } •

3, Decide the truncation point n based on rate vector R  so that ^  R,,,̂  ̂< %R,
j=0 1=0

.4. Retrieving the optimal truncation points N - ^ i f , n ] ^  | 0 ^ z < o }  for all video

objects and all frames with current GOP from the selected n elements of rate and slope 

vectors in step 3.

After deciding the optimal truncation points, the bit number Rj'^ and the slope S ' , - fo r  each 

J e  My are kept in the header along with the embedded bit stream.

The proposed rate truncation scheme can easily achieve temporal, quality and object scalabilities. 

Since the video objects are encoded independently, the bitstream of video objects is separable. 

The decoder can easily extract special video objects and decode them, so the manipulation of 

video object is natural. Furthermore, as the video frames are encoded independently, temporal 

scalability can be easily achieved by throwing the bits from all video objects of high temporal 

level frames.

To achieve quality scalability, a multi-layer bitstream is formed and each layer indicates a certain 

quality level. To make a A-layer bitstream, we first select A} ,- >A/y > ” *>Ayy which satisfy

^  RfMox - With every threshold, a truncation point and a layer of bitstream can be

achieved for each video object. The corresponding layers from all video frames and all video 

objects constitute the layers of the final bitstream. According to the available bandwidth and the 

computation capacity, the decoder can select first few layers to be decoded. The bit-plane coding 

and multiple video objects ensure that the bitstream is embedded with fine granularity.

Above algorithm can also be used to achieve object scalability easily by allocating the bits among 

different objects optimally. The rate-distortion theory indicates that optimal coding performance 

can be achieved if  all of the video objects operate on the same R-D curve. The functionality of the 

algorithm is thus to find the common rate-distortion slope of all video objects, and calculate the
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number of included bits for each object. The final bitstream consists of the truncated block 

bitstream and the bitstream length of each video object.

Above algorithm can also achieve rate control among the video objects easily. Since each object 

and each frame in the GOP are encoded independently, the bitstream of each object is separable. 

The decoder can easily extract only a few video objects and decode them. For example, if we are 

more interested in some special video objects, we can assign smaller Lagrange multipliers to 

these video objects according to their importance during R-D optimization for multiple video 

objects, and code these regions by operating at points of less negative slope on the D{r ) curve. 

Less interesting regions are assigned larger Lagrange multipliers so that the operating points on 

the D (r)  curve have more negative slopes.

In general, according to the requirement o f applications, the final bitstream can be constructed in 

order to meet the requirement. The preceding multi-layer bitstream construction method enables 

the bitstream witii quality scalability. To obtain resolution or temporal (frame rate) scalability, the 

bitstream can be assembled subband-by-subband, with the lower resolution or low temporal

subband in the beginning. Moreover, as the bit number and the sloped/’-' for each yew,- are

included in the header of the bitstream, the final bitstream can be rearranged to meet further 

requirements. This property makes the final bitstream very flexible to be reused for all sorts of 

applications without re-encoding them.

7,3 Experimental results

The proposed scalable 2D model-based texture coding scheme has been fully implemented. Its 

performance has been investigated and compared with state-of-the-art video coding standards,

H.264 [H264-2003] and MPEG-4 [MPEG4-2001]. Currently, H.264 is the best available video 

codec, which can match the best possible MPEG-2 quality at up to half the data rate. H.264 also 

delivers excellent video quality across the entire bandwiddi spectrum - from 3 G to HD and 

everything in between (from 40 Kbps to upwards of 10 Mbps). However, H.264 does not support 

object-based video coding. MPEG-4 can support both frame-based and object-based video coding. 

Therefore, these two available codecs are selected during experiments.

In order to compare the performance o f the proposed scheme with H. 264, the video frame is 

segmented into two video objects: one foreground object and one background object. Two video 

objects are encoded and decoded separately, and then used to reconstruct the decoded video
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frame. This coding process is named as frame-based texture coding. If only one video object is 

encoded and decoded so as to compare it with the object-based coding of MPEG-4, this coding 

process is named as object-based texture coding.

7.3.1 Comparison with MPEG-4 and H. 264 for frame-based texture coding

Extensive experiments have been conducted to evaluate the performance of the proposed scalable 

2D model-based texture coding scheme for frame-based texture coding, and compare it with that 

of MPEG-4 and H 264 standards. Three test video clips, including Coastguard, News, and 

Motr dhtr sequence in QCIF resolution (with 10 fps, 160 frames), were used in the experiments. 

For MPEG-4, Microsoft version is employed. For H. 264, version JM82 is applied. During the 

tests, rate control is enabled for both MPEG-4 and H. 264. For MPEG-4, TM5 is selected as the 

rate control method.

Figure 7.14 illustrates the PSNR performance o f Y-component for different encoding bit rates. 

Readers are reminded that the experimental results presented here for each sequence are decoded 

from a single embedded bitstream for the proposed encoding method and from different 

bitstreams corresponding to individual target coding rates for MPEG-4 and H. 264. From the 

results, it is found that the proposed method is 1 - 4 dB superior to the MPEG-4 coder for a wide 

range of bit rates. When compared with H.264, the proposed scheme can achieve better 

compression performance at the low bit rate. However, it is inferior to H. 264 at medium and high 

bit rates. The success is due to the use of scalable MV coding in the proposed scheme. When the 

target bit rate is very low, which is not enough to encode the full MV information, only the first 

MV layers are encoded and some bits are saved to encode the first frame o f GOP. In the proposed 

scheme, the amount of bits used for encoding MV information is decided automatically by the 

rate-distortion optimised bit truncation algorithm discussed in Section 7.2.4. Most importantly, the 

proposed scheme can achieve highly scalable bit stream, which is important for the new 

applications such as DMA. It can achieve temporal, object and quality scalabilities 

simultaneously.

Regarding to the computational complexity, the proposed scheme has higher complexity than 

MPEG-4 and H.264 due to the video segmentation, object modelling and MC-based temporal 

filtering. Duiing texture coding, the complexity o f MC-based temporal filtering is larger than 

ME/MC in MPEG-4 and H.264 as mesh-based motion estimation and compensation is employed.
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Figure 7.14 -  PSNR performance comparison for Y-component of (a) Coastguard; (b) News: and

(c) Motr_dhtr sequence

Figure 7.15 shows the decoded video frames for MPEG-4, the proposed scheme and H. 264. It is 

shown that MPEG-4 produces visually annoying blocking artefacts. The decoded images through 

the proposed scheme and H. 264 have better subjective performance.
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(c)
Figure 7.15 -  Encoding performance comparison for (a) Coastguard with 128kbits/s; (b) News 

with 64kbits/s; and (c) Motr_dhtr sequence with 64kbits/s. The left image is encoded by MPEG-4. 

The middle image is encoded by our proposed scheme. The right one is encoded by H. 264

encoder

Figure 7.16 shows the PSNR distribution of Y component for Coastguard sequence under the bit 

rate of 128kbits/s, as well as the results of MPEG-4 and H.264 codec (for MPEG-4 and H.264, the 

actual bit rate is 128.17 kbits/s, 133kbits/s respectively).

Figure 7.17 shows the PSNR distribution of Y component for News sequence under the bit rate of 

64kbits/s, as well as the results of MPEG-4 and H.264 (for MPEG-4 and H.264, the actual bit rate 

is 64.16 kbits/s, 67.97 kbits/s respectively).

PSNR(dB) Coastguard sequence at 128kbits/s

37
H.264  
MPEG-4 
Proposed scheme

100 140 160120
Frames

Figure 7.16 -  PSNR performance (Y component) of H.264, MPEG-4 and the proposed scheme
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Figure 7.17 -  PSNR performance (Y component) of H.264, MPEG-4 and the proposed scheme

Figure 7.18 shows the PSNR distribution of Y component for Motr_dhtr sequence under the bit 

rate of 64kbits/s, as well as the results of MPEG-4 and H.264 codec (for MPEG-4 and H.264, the 

actual bit rate is 64.12 kbits/s, 68.36 kbits/s respectively).

PSNR(dB) Motr_dhtr sequence at 64 kbits/s
48
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Figure 7.18 -  PSNR performance (Y component) of H.264, MPEG-4 and the proposed scheme
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7.3.2 Comparison with M PEG-4 for object-based texture coding

The proposed algorithm is compared with an MPEG-4 coder that uses object-based texture 

coding. Four test video clips with 100 frames are used: Claire, Motr_dhtr, News, and Foreman 

sequence in QCIF (lOfps). For each test sequence, only the foreground video object is encoded. 

During test, “MP4” rate control model is selected for MPEG-4, which is the only model to 

support object-based video coding.

Figure 7.19 shows the PSNR values for Y component at different coding bitrates for MPEG-4 and 

the proposed scheme. It is shown that the proposed coder outperforms MPEG-4 (object-based) by 

l-2dB while providing desirable multi-rate features. The experimental results presented here for 

each sequence are decoded from a single embedded bitstream for the proposed encoding method 

and from different bitstreams corresponding to individual target coding rates for MPEG-4.

Figure 7.20 shows the performance comparison for different video objects under different video 

encoding rates. The left image is encoded by MPEG-4. The right one is encoded by the proposed 

scheme. It can be shown that our proposed scheme can achieve better visual performance.
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Figure 7.19 -  PSNR performance comparison for Y-component of (a) Claire; (b) Foreman; (c)

Motr_dhtr, and (d) News sequence.
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(c)
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MPK(;4
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(d)

Figure 7.20 -  Encoding performance comparison for: (a) Claire with 24kbits/s; (b) Foreman with 

48kbits/s; (c) Motr_dhtr with 24kbits/s and (d) News with 48kbits/s. (Left) MPEG-4; (right) the

proposed method

Object
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(a) Complexity of each component (b) Bit usage of each component

Figure 7.21 -  Complexity and bit usage of the proposed scalable 2-D model-based video coding

scheme

The complexity and the bit usage of each component in the whole video coding system have also 

been evaluated. Figure 7.21 shows the complexity and bit usage of the proposed scalable 2D 

model-based video coding system for Motr_dhtr sequence. Currently, video segmentation is a
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time-consuming part o f the proposed system. It almost occupies 40% computation complexity. 

Figure 7.21 (a) shows the average proportion o f the computational time for the system. However, 

video segmentation is not included here. It is shown that speeding the MCTF is necessary to 

achieve real-time video compression. Figure 7.21 (b) shows the bit usage of the components in the 

proposed system Motr_dhtr sequence under bit rate 32 kbits/s. It is shown that only few 

percentages (7.2%) of the total bits are used for scalable model and shape compression.

7.4 Conclusions

This chapter presents a scalable 2D model-based texture coding scheme. We first reviewed some 

scalable video coding methods, some o f which have just emerged for the proposal of MPEG 

scalable video coding (SVC). The properties and limitations of these techniques are also 

mentioned.

In order to avoid the disadvantages of existing techniques, we proposed a scalable 2D model- 

based texture coding scheme. In the proposed scheme, video sequence is first segmented into 

several video objects with different motion patterns. This makes the temporal filtering easy for the 

occlusions and the newly appeared patches. The foreground video object is represented by 3-layer 

scalable content-adaptive object model before texture encoding. The background object is 

represented by adaptive quadrangular mesh. In the proposed texture coding technique, warping 

motion compensated temporal filtering is conducted before wavelet-based residual image coding. 

An improved shape-adaptive SPECK algorithm is used to code the “I-frame” and residual frames. 

After encoding the motion vectors and texture frames progressively, the bit allocation and optimal 

truncation scheme in EBCOT algorithm have been extended to facilitate bit allocation among 

video objects, among video frames and among motion and texture components within GOP.

The experimental results show that the proposed scalable 2D model-based texture coding scheme 

outperforms the nonscalable MPEG-4 standard in both objective and subjective evaluation over a 

wide range of bitrates and for both frame-based and object-based texture coding. Although its 

performance is inferior to H.264 standard in middle to high bit rate ranges, the proposed scheme 

is superior to H.264 for the low bit rate coding, due to the scalable coding of motion vectors. Most 

importantly, the proposed scheme provides highly scalable bit stream, which can achieve 

temporal, quality and object scalabilities simultaneously. This property is very important for 

achieving new functionalities, such as Universal Multimedia Access (UMA).
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Chapter 8

Conclusions

We round off the thesis with a summary of contributions of this work and some directions for 

future research.

8.1 Contributions of the Thesis

The overall goal of this research work is to design a scalable 2D model-based video coding 

system. The original work is set out in Chapters 2-7. The main contributions of the research are 

summarised below:

• A novel scalable 2D model-based video coding system is presented in this thesis. The 

proposed system consists of video segmentation and object modelling (including face 

detection and modelling), scalable model compression and scalable texture compression. 

The proposed system is capable of achieving scalable video coding with good compression 

performance at very low bit rates. It can also achieve temporal, quality and object 

scalability simultaneously.

• A new video segmentation scheme targeted at reducing human interaction during video 

segmentation is presented in Chapter 3, which is based on the proposed complexity-scalable 

contour tracking algorithm. First, watershed transform is used to segment the video frame 

into uniform and homogeneous patches with respect to colour. The motion and user input 

information is used to merge the patches into objects with semantic meaning. Next, 

subsequent frames are segmented by using the proposed contour tracking algorithms. It is 

experimentally demonstrated that the proposed contour tracking algorithm is robust for 

tracking the object contour with non-rigid and large motion, even with partial occlusion. 

The tracking results of each step can be used for some special applications with different 

accuracy requirements. As object motion and texture are used in different steps of tracking 

process, the proposed algorithm can be considered as a hybrid feature-based, texture-based 

and contour-based tracking algorithm.
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• A robust face detection and facial feature extraction scheme is presented in Chapter 4. This 

scheme unitises the luminance-adaptive skin colour model and Bayesian detection / 

relaxation for face extraction, which makes face extraction robust to different skin colour 

and lighting conditions. After localising the human face, a simple and reliable facial feature 

detection scheme is developed for eye and mouth detection. A robust chin detection 

algorithm is also proposed with the combination of active snake with prior shape model. In 

the chin detection algorithm, gradient vector flow (GVF) of a binary edge map is used as 

the external force of active snake model, which can enlarge the convergence range. 

Experimental results show that the prior shape model can improve the robustness against 

the weak chin edges and partial occlusion. After facial feature extraction, a heuristic face 

modeling scheme is developed using the detected facial features and facial muscular 

distribution. The experimental results show that a priori knowledge of human face can 

improve the accuracy o f 2D model design and motion representation.

• New algorithms for scalable shape coding are presented in Chapter 5, which include 

scalable shape representation, scalable intra-shape coding and scalable predictive shape 

coding. In both shape representation and coding, curvature scale space (CSS) image is 

employed to detect the salient feature of object contour and to estimate the contour motion. 

For scalable shape representation, the proposed algorithm can achieve up to 20-80% of the 

total number of vertices for lossless reconstruction of test video objects when compared 

with the state-of-the-art methods [GERKIN-1997] [JORDAN-1998] [MELNIKOV-2000b]. 

For scalable intra shape coding, the proposed coder exhibits excellent compression 

performance for both lossy and lossless shape coding as compared to both state-of-the-art 

vertex-based shape coding algorithms and CAE algorithm in MPEG-4., For example, the 

proposed intra-shape coding scheme can provide 25-60% gain in bit rate over the scalable 

encoding method in [JORDAN-1998], and it can achieve 5-10% gain over conventional 

non-scalable vertex-based coding [CONNELL-1997] in bit rate. For scalable predictive 

shape coding, motion compensation in the coarser layers and intra-coding for the finest 

layer can improve the compression performance further. The reasons for the success of our 

proposed scalable shape coding algorithms are:

1. The intrinsic image grid quantisation is taken into account during the contour 

approximation, which can reduce up to 30-80% the number o f approximating 

vertices for lossless representation.
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2. CSS image is used to detect the salient feature of object contour and used to 

match the contours during motion estimation;

3. During shape coding, the information of the encoded coarser layers are employed 

to encode the vertices of the current layer.

An improved shape-adaptive SPECK algorithm is proposed in Chapter 6 . SPECK algorithm 

is an efficient wavelet-based image coding algorithm and it has been extended successfixlly 

for arbitrarily shaped texture coding [LU-2001]. In our research, the improvement of shape 

adaptive SPECK algorithm focuses on the two aspects: aggressive discarding of transparent 

regions and employing CABAC coder to compress the significance map, refinement 

information, and sign information. An improvement over the state-of-the-art algorithms in 

the literature, such as SA-SPIHT and the original SA-SPECK, is exhibited in extensive 

simulation results.

A new highly scalable 2D model-based texture coding scheme is presented in Chapter 7. 

We demonstrate in the experimental results that a variety of coding bit rates and temporal 

resolution can be decoded firom a single compressed file using the new scalable coding 

method. It is demonstrated that no blocking artefact is encountered even with very low bit 

rate coding as the warping motion compensation, together with the scalable object model, is 

employed. It is further demonstrated that scalable motion vector coding can achieve better 

compression performance at very low bit rates. The proposed scheme can achieve high 

scalability without a significant loss in compression when compared with H. 264. Its 

performance is superior to MPEG-4 objectively and subjectively, in both frame-based and 

object-based video coding.

The designed scalable 2D model-based texture coding scheme possesses the following 

desirable properties:

1. Free from DCT blocking artefacts due to the warping motion compensation and 

wavelet analysis. The decoded texture does not show the annoying blocking 

artefacts of DCT coding, even at very low bitrates.

2. Error resilience: Error propagation in the proposed scheme is limited by the 

length of the temporal synthesis filters. This is the advantage of employing 

lifting-based temporal filtering technique.
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3. Excellent compression efficiency: The redundancy in the source video is 

efficiently reduced by temporal filtering with warping motion compensation of 

video objects. The representation of video frames into video objects also 

improves the motion compensation. The subband correlation can be effectively 

exploited through the improved shape-adaptive SPECK algorithm. The 

experimental results show that the proposed coding system outperforms the 

nonscalable standard MPEG-4 coder over a wide range of bitrates in PSNR 

performance. Its performance is also comparable to H.264 at very low bit rates 

(< 1 0 kbits/s).

4. Flexible and highly scalable bit streams: The proposed scalable texture coding 

system can accommodate a wide variety of scalable functionalities utilising the 

multi-resolution nature innate in temporal and spatial subband filtering. Most 

importantly, these desirable scalable features are provided without a significant 

performance loss when compared with H.264, which is commonly seen in 

traditional hybrid coding for scalable applications.

8.2 Future Research Directions

This section describes some possibilities for further development and research, and outlines the 

author’s view of the future development o f scalable model-based video coding. Some suggestions 

for future work are given below:

• The more immediate research activities can be carried out with the video segmentation 

described in Chapter 3. Here, a novel video segmentation approach is proposed, which is 

based on a complexity-scalable contour tracking scheme. Intensive experiments have been 

conducted to prove the efficiency of this approach. However, video segmentation technique 

is still immature. Future research can be focused on:

1. In order to reduce the human interaction for the initial object contour and improve 

the segmentation efficiency, more sophisticated mathematical methods, such as 

Graph cut [BOYKOV-2001], Markov random field [GEMAN-1984], and Level 

sets algorithm [PARAG-2000], can be investigated and employed.
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2. For the contour tracking of the subsequent frames, particle filtering, Level sets 

and Bayesian network are the possible techniques to incorporate into the 

proposed algorithm and thus improve the accuracy and robustness of contour 

tracking. Furthermore, multiple object segmentation and tracking is also one of 

the interesting topics for future research.

3. Future research is necessary for peiformance evaluation, both objectively and 

subjectively, o f video segmentation. Although some research has been conducted 

[WOLLBORN-1998] [CORREIA-2003], a satisfying solution is not yet available 

in the literature.

These research topics have been included as part of our current research tasks in EU 

VISNET project (www.visnet-noe.orgL

Chapter 4 discusses the issues regarding face detection and scalable modelling. TÈs work 

can be extended to 3D domain. The main future research will be head modelling from a 

single video sequence, as well as the 3D head model transmission. One idea is that face 

model is constructed from the first several finmes, which are encoded using traditional 

object-based video coding techniques. Then the subsequent frames are encoded using the 

3D model-based video coding technique. To achieve this, for example, shape-adaptive face 

texture and shape information from the first several frames is encoded and transmitted to 

the decoder. Then, content-adaptive 3D face model is constructed by both encoder and 

decoder. The constructed 3D face model is used to compensate the face motion in the 

subsequent firames. In this way, only 2D shape and texture need to be sent. Furthermore, the 

use of content-adaptive 3D face model can avoid the computationally complex step of 3D 

face model adaptation.

Chapter 5 examines the issues related to scalable shape coding and scalable model 

compression. For shape coding, the generated bit stream is very sensitive to the channel 

error during coding. Although scalable shape coding can improve its robustness against 

channel error through unequal error protection (UEP), the investigation of error 

concealment techniques is necessary. Currently, some research has been conducted for intra 

error concealment of shape information [SHIRANl-2000] [SOARES-2004]. However, it is 

possible to use the correctly decoded object shape in the previous frames to cancel tiie shape 

error in the current frame, that is, to employ temporal information for error concealment. 

Not much research has been conducted in this topic. Furthermore, for scalable shape
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coding, the correctly decoded coarser layers can also be employed to conceal the error in 

the current layer.

•  Chapter 6  mainly investigates the scalable intra texture coding of arbitrarily shaped video 

objects. An improved shape-adaptive SPECK algorithm is proposed for high compression 

efficiency. Experimental results verify the improvement. However, as demonstrated in 

Figure 6 .6 , a variety o f statistical dependencies can be observed in the dual pyramidal 

structure established from quadtree representations of a decomposed image. The context 

modelling scheme presented in this work (Section 6 .6 ) for exploitation of such statistical 

redundancies is primarily based on some local texture features. It is expected that improved 

compression can be achieved further by more sophisticated context modelling strategies, 

e.g., advanced context selection and quantisation methods in [WU-1997]. Furthermore, both 

“I-fi'ame” and the residual frames are currently encoded using the same context model. 

Further research can improve the coding performance by introducing different context 

models for different temporal jframes.

• Scalable 2D model-based texture coding is discussed in Chapter 7. At the current stage, 

dyadic subband decomposition and a fixed GOP size have been employed during temporal 

filtering. Such a subband structure may not be efficient for image sequence with low 

temporal correlation. Further improvement of encoding performance can be made by 

adopting adaptive subband decomposition structure and variable GOP size. Moreover, 

further research can be conducted for joint source-channel coding related to model-based 

source codec. Very little work has been performed that looks at the joint source-channel 

coding related to model-based video codec.
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Appendix B

B,1 Shape-adaptive discrete wavelet transform

Assuming odd symmetric biorthogonal wavelet filters with Lg (odd) taps for the low-pass 

filter and Lf̂  (odd) taps for the high-pass filter, let the low-pass analysis filter taps be 

g ( i \  i  = 0 ," ,Lg - I  and the high-pass analysis filter taps be /i(r),i = 0,■ ■ •,I,/, - 1 .  They have 

the following properties:

«■(')= - I - ' } >  =

h(i) = h ( L i , - l - i ) , fo r  i = 0 , - , ( i ^ - l ) / 2  (B_1.2)

Let the low-pass synthesis filter be g(z), then

Let the high-pass synthesis filter be h (i), then

. h (i) = (" l)* g(i), fo r  / = 0, ’ • •, Zg -1  (B_l .4)

The analysis filtering process is given by:

T(i)=  ^  x(z + 7 - ( z ^ - l ) / 2 ) g { z ^ - l - y )  (Lowpass) (B_1.5)
j = 0

L g —l
s (0 =  S  4  + y - ( i A - l V 2 W i ; , - l - y )  (Highpass) ( B J .6 )

y=o

where T(i) and s(i) are the low-pass and high-pass band filter outputs before subsampling, 

respectively.

The wavelet coefficients from the analysis are obtained by subsampling the above filtering 

results by a factor of two. Subsampling can be at either even position or odd positions. 

However, in order to use the symmetric extensions, the subsampling of low-pass coefficients 

and that of high-pass coefficients always have one sample shift. If the subsampling positions
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of low-pass coefficients are even, then the sub-sampling positions of high-pass coefficient 

should be odd, or vice versa.

The subsampling process is described as follows:

C (i)= T (2 i-s) (B J .7 )

D(i) = S(2i + l - s )  ( B J .8 )

The subsampling of high-pass coefficients always has one sample advance.

To perform synthesis, these coefficients are first upsampled by a factor of two. The 

upsampling process is given as follow:

/ ’(2 i-i)= C (!>  P ( 2 i+ l - s )  = 0; (B_1.9)

e (2 i+ l- s )= D (i) ,  e (2 i+ s )= 0 ; (B J.IO )

where P{k) and Q{k) are upsampled low-pass and high-pass coefficients, respectively. Then

the synthesis filtering process is given as follows:

1
wfc) = E  P{i + 7  -  (Z/, - 1)/ 2)g(Z/, - 1  -  7 ) (Low pass) (B _l. 11)

J=0

*’('■)= L  + 2 -  ( ig  - 1) / 2X (tg  -1  -  y) (High pass) (B_1.12)
7=0

r(i)-=u(i) + v(i) (B J.13 )

where r(z) is the reconstructed signal.
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B.2 SA-SPIHT Algorithm

The SA-SPIHT algorithm can be summarised as follows;

H  = roots of the spatial orientation trees 
0(1,7) = offsprings of pixel (1,7).

^ i ^ j )  = descendants of pixel { i ,j) .
L { i j )  = D ( i j ) - 0 ( i , j ) .
‘̂ «(^) “  significance of set T  w-r-t n , 1 means significant, 0 means insignificant.

1. Initialisation

• output n = [log2(max(^- y)|c, j ||] lJ , where c  ̂j  is the wavelet coefficient of 

point (1,7)

• set LSP = ^

• set LIP (z, 7) eZ f if  (z, 7 ) is within the object

• set LIS = (z, 7) g H  i f  (z, 7) is within the object and with descendants

2. Sorting Pass

(a) for each (z,7)e LIP,

• output S,XUj)

• if  S„ (z, 7) = 1, move (z, 7) to LSP and output the sign of c / 7

(b) for each (z,7)e LIS, if  (1,7) e  Type A

• output ^«(^(z, 7))

• i f 5„(£>(z,7)) = l

-  for each (k,Z)e o { i,j)  and (Z,/)e shape mask 

o output 5 „(A:,/)

o if  Sn {k,/) = 1, add {jc,i) to LSP and output its sign 

o if  S^ [k, /) = 0 , add {k, l) to LIP

............... -  i f  L { i , j ) - ^  , remove (z,7’) from LIS , otherwise change {i,j)  to

Type B

• if (z,7)e Type B and (z,7)e shape mask

-  output S,Xl {î,j ));
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-  if SJ^{L(i,J])=l , add each (Z,/)e 0 (i,j)  to LIS as Type A entry, 

remove (1,7) from LIS

3 . Refinement Pass

For each (z, 7) e  LSP , except hose included in the latest sorting pass, output the n th 

MSB of jcj-y|.

4. Quantisation Update Step 

Decrement n by 1 and go back to step 2.
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B,3 SA-SPECK Algorithm

The SA-SPECK algorithm can be summarised as follow:

1. Initialisation

• partition image transform X  into two sets: S  =  root and /  s  Z  -  5' (see Figure 
6 .8 (a))

output n = log2

• add S  to LIS

• set LSP = </>

•  set max lengthinLIS = length{s)

2 . Sorting Pass

• for / = 1 to / = maxlengthLIS

— for each S  e  L I S , with length(s) — I and S  e  shape m ask , 

o ViocessS{s^

• Procas'5/( )

3. Refinement Pass

• for each (z, y ) e  L S P , except those included in the last sorting pass, output the 

nth  MSB of \ci ,1
I '»•' I

4. Quantisation Step Update 

Decrement « by 1 and go back to step 2.

The functions Pr oces.SiS((S), C odeS{s\ Proccss/( ) and Codeli^ ) are presented below:

Function Pr ocays6'(5') :

• output S ,Xs)

• ifS „ (s )  = l

-  if 5' is a pixel

o output sign o f S  

o add S  to LSP

-  else

o CodeSis^
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-  i f S s L I S

o remove S  from LIS

• else

-  if S^L IS ,add  6' to ZZ9

Function CodeS{s) :

•  partition S  into four equal subsets o(;S)(see Figure 6.8 (b))

• for each

-  output SfXo{s))

-  if^„(0(5)) = l

o if  0 (5 ) is a pixel

'V output sign of 0 {s)

/  add 0 {S) to LSP 

o else

^  CodeS(o{s))

-  else

o add 0(5') to LIS

Function Pr ocessl{ ) :
• output Sf^{l)

•  i fS „ ( /)  = l

-  Codel ( )

Function Coz/e/( ):
• partition I  into four sets: three S and one I  (see Figure 6.8 (c))

• for each of three sets S

~ if length{s) > max lengthinLIS

o max lengthinLIS = length{s)

-  VvocessSis)

• Pr ocessl{ )
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B.4 Context tables of improved shape adaptive SPECK algorithm

Table B_4.1 -  Look-up table for significant coding o f each quadtree node

L L , L H , and HL bands HH  bands

Label P H V HV D Label P H V HV D
0 0 0 0 0 X 0 0 0 0 0 X
0 0 X X 1 <3 0 0 X X 1 <3
1 0 X X 1 >3 1 0 X X 1 è;3
1 0 X X 2 X 1 0 X X 2 X

2 0 X X >2 X 2 0 X X >2 X
3 1 0 0 0 1 3 1 0 0 0 1
4 1 0 0 0 >1 4 1 0 0 0 >1
4 1 0 1 1 X 4 1 X X 1 <3
5 1 1 0 1 X 4 1 1 1 2 <2
6 1 X X 2 X 5 1 X X 1 >3
7 1 X X >2 X 5 1 0 2 2 X

5 1 2 0 2 X

5 1 1 1 2 ^ 2
6 1 X X >2 X

Table B_4.2 -  Contribution firom the horizontal neighbours

W E h
Significant, + Significant, + 1
Significant, - Significant, + 0
Insignificant Significant, + 1
Significant, + Significant, - 0
Significant, - Significant, - -1
Insignificant Significant, + -1
Significant, + Insignificant 1
Significant, - Insignificant -1
Insignificant Insignificant 0

Table B_4.3 -  Look-up table for sign coding

h V ^45 1̂35 X Label
1 1 X X 1 4
1 0 X X 1 3
1 -1 X X 1 2
0 1 X X 1
0 0 0 0 1 0
0 -1 X X 1 1
-1 1 X X -1 2
-1 0 X X -1 3
-1 -1 X X -1 4
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Table B_4.4 -  Look-up table for context selection in refinement coding of significant 

coefficients

L L , L H , and HL bands HH  bands
Label HVP Label HVP

0 0 0 0
1 <3 1 >0
2 ^ 3
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Appendix C

List of Abbreviations

2-D Two-dimensional

3-D Three-dimensional

AAC Adaptive Arithmetic Coding

AROS Arbitrary Region-Of-Support

AVO’s Audio-Visual Objects

B-VOPs Bi-directional VOPs

bpp bit per pixel

BTBC Background To Be Covered

BV Boundary Vertex

CABAC Context-Adaptive Binary Arithmetic Codec

CAE Context-based Arithmetic Encoding

GIF Common Intermediate Format

CODWT Complete to Overcomplete Discrete Wavelet Transform

CPs Control Points

CSS Curvature Scale Space

DCT Discrete Cosine Transform

DFD Displaced Frame Difference

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimised Truncation

EM Expectation Maximization

EOL End-of-layer

EZBC Embedded Zero Block Coding
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EZW

!

Embedded Zerotree Wavelet

FAP’s Facial Animation Parameters

FB Filter Banks

FEC Forward Error Correction

FGS Fine-Granularity Scalability

FIR Finite Impulse Response

FLD Fisher Linear Discrim inant

fps frame per second

GMM Gaussian Mixture Models

GOP Group o f Pictures

GPSC Generalised Predictive Shape Coding

GVF Gradient Vector Flow

IBMCTF In-band MCTF

rru International Telecommunication Union

JBIG Joint Bi-level Image experts Group

JPEG Joint Photographic Experts Group

Kbps Kilobits per second

LIP List o f Insignificant Pixels

LIS List o f Insignificant Sets

LMS Least M ean Square

LSP List o f Significant Pixels

MAP Maxim ization o f A  posteriori Probability

Mbps Megabits per second

MC Motion Compensation

MC-EZBC Motion Compensated Embedded Zero Block Coding

MCTF Motion Compensated Temporal Filtering

ME Motion Estimation

ME Motion-Failure regions
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ML Maximal Likelihood

MORF Morphological Open by Reconstruction Filter

MPEG Motion Picture Experts Group

M R Magnitude Refinement

MRF Markov Random Field

MSB Most Significant Bit

M Th Motion threading

MV Motion Vector

NN Neural networks

GAVE Object Adaptive Vertex Encoding

OBMC Overlapped Block Motion Compensation

OTS Object-based Temporal Scalability

PCA Principal Component Analysis

PCRD Post-Compression Rate-Distortion

PR Perfect Reconstruction

PSNR Peak-to-peak Signal to Noise Ratio

QCIF Quarter Common Intermediate Format

QP Quantisation Parameter

RLC Run-Length Coding/Coder

ROI Region-of-interest

SA-DCT Shape-adaptive DCT

SA-DWT Shape-adaptive Discrete Wavelet Transform

SA-EBCOT Shape-adaptive EBCOT algorithm

SA-SPECK Shape-adaptive SPECK algorithm

SA-SPIHT Shape-adaptive SPIHT algorithm

SC Sign Coding

SIF Storage Intermediate Format

SNR Signal to Noise Ratio
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SOT

SPECK

SPIHT

SVC

SVM

UB

UBP

UMA

VLC

VLD

VO

VOL

VOP

WLS

ZC

Spatial Orientation Tree 

Set Partitioning Embedded BlocK 

Set Partitioning in Hierarchical Trees 

Scalable Video Coding 

Support Vector Machine 

Uncovered Background 

Unequal error protection 

Universal Multimedia Access 

Variable-Length Coding/Coder 

Variable-Length Decoding/Decoder 

Video Object 

Video Object Layer 

Video Object Plane 

Weighted Least Squares 

Zero Coding
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