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Abstract

With rapid mergers of computer, communications, and entertainment industries, we can
expect a trend of growing heterogeneity (in channel bandwidth, receiver capacity, etc.) for
future digital video coding applications. Furthermore, some new functions appear, such as
object manipulation, which should be supported by the video coding techniques. The
traditional video coding approach is very constrained and inefficient to the heterogeneity
issue and user interaction. Scalable coding, allowing partial decoding at a variety of resolution,
temporal, quality, and object levels from a single compressed codestream, is widely
considered as a promising technology for efficient signal representation and transmission in a
heterogeneous environment. However, although several scalable algorithms have been
proposed in the literature and the international standards over the last decade, further research

is necessary to improve the compression performance of scalable video coding.

This thesis investigates scalable 2D model-based video coding method with efficient video
compression as well as excellent scalability performance, in order to satisfy the newly
appeared requirements. It first examines main model-based video coding techniques and
scalable video coding methods. Also, the parametric video models that describe the real world
and image generation process are briefly described.

Next, video segmentation algorithms are investigated to semantically represent the video
frame into video objects. At the first frame, the texture information and the motion from first
several frames are used to extract the semantic foreground objects. For some sequences, user
interaction is required to get semantic objects. In later frames, the proposed complexity-
scalable contour-tracking algorithm is used to segment each frame. Afier that, each object is
progressively approximated using three-layer 2D mesh model. In order fo represent the
motion of human face more precisely, face detection and modelling are also investigated. This
technique, in which human face is modelled separately, is shown to produce improvements of
object motion representation.

Scalable model compression is also outlined in this thesis. Object model is represented into
two parts: object shape and interior object model, which are compressed separately. A
scalable contour approximation algorithm is proposed. Both inira- and predictive scalable

shape-coding algorithms are investigated and proposed to code the object shape progressively.




The encoded coarser layers are used to improve the coding efficiency of the current layer. The

effectiveness of these algorithms is demonstrated through the results of extensive experiments.

We also investigate the scalable texture coding of video objects. An improved shape-adaptive
SPECK algorithm is employed in intra-texture coding and is also used for residual texture
coding after motion compensated temporal filtering. During motion compensated temporal
filtering, scalable mesh object model is used, and scalable motion vector coding is achieved
using CABAC codec. A hicrarchically structured bitstream is created, which is optimised for
rate-distortion, to facilitate efficient bit truncation and bit allocation among video frames and
video objects. The coding system can encode/decode the video object independently and
generate a separate bit stream for each object. As is exhibited in our experiments, such a high
coding scalability in the proposed coding system is achieved without a significant cost in

compression performance commonly experienced in most scalable coding systems.

Key words: Model-based video coding, scalable video coding, video processing and

segmentation, vertex-based shape coding, motion compensated temporal filtering (MCTF).
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Chapter 1

Introduction

1.1 Preamble

Currently, multimedia technology provides content creators and consumers with a myriad of
coding, access, and distribution possibilities. At the same time, communication infrastructure is
being put info place to enable access to information and multimedia services from almost
anywhere at anytime, These make the Universal Multimedia Access possible. In order to achieve
an efficient Universal Multimedia Access {(UMA), video coding plays an important role, which

should support several new functionalities, such as efficient scalable coding, and object
manipulation.

Much research has been conducted for video coding. Some recently standardised video coders,
such as MPEG-4 [MPEG4-2001] and H.264 [H264-2003], can compress the video efficiently. For
example, H.264 can save about 50% of total bits when compared with MPEG-2. However, these
coders utilise waveform-based video coding approaches, which are based on the combination of
block-based motion compensation with Discrete Cosine Transform (DCT). One of the main
problems of these now so-called first generation coding techniques is that they did not question
the image representation structure imposed by the canonical representation of the image. These
techniques use pixel or block of pixels as the basic entities that are coded. In addition, they also
share in common the absence of consideration for the human visual system (HVS). These

standardised video codecs, such as MPEG-4 and H.264, present severe limitations for very low
bit-rate video coding applications.

In order to improve the visual performance of video coding, some totally different video coding
methods are introduced, which are known as second generation video coding techniques
[TORRES-1996]. Based on the employed source models, these methods are divided into region-
based video coding [ERYU-1995] [CZEREPINSKI-1997], object-based video coding [GERKIN-
1994], knowledge-based video coding [KAMP-1997b] and semantic video coding [CHOI-1994].
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In fact, all of these methods can be uniformly considered as the model-based video coding

because the encoders compress the video object-by-object, instead of pixel-by-pixel. The block
diagram of these methods can be simply depicted in Figure 1.1

Input 5 . Output
lmage —™ Analysis »~| Synthesis |—=— Tiisae
I Analysis +
Image Source D Image Source
Model Model

Figure 1.1 — General description of a model-based coding system

Model-based video coding has been an active area of research for a number of years [AIZA-1995]
[PEAR-1995]. It makes use of a variety of source models taking into account the structural
features of the image. Semantic knowledge of the scene can be also exploited to achieve high
efficiency when encoding video sequences for certain scenarios. In model-based video coding,
both 2-D and 3-D models are employed at various levels of complexity and accuracy to provide
the optimal match between the video scene and the employed model. Therefore, the video frames
are described by specifying 2D and/or 3D motion and deformation of the. objects in the scene.
Since only a few parameters are necessary to qualify the temporal changes, extremely low bit-rate
can be achieved. Good compression performance has been achieved at very low bit rates with a

model-aided coder [EISERT-2000]. Compared to DCT-based video coders, model-based video
coding does not show any blocking artefacts at low data rates.

However, for model-based video coding, 3D model-based codecs have a major disadvantage in
that they can only be used for sequences in which the foreground object closely matches the pre-
defined reference model. 3D model-based video coding techniques are too rigidly object-specific
because the extraction of 3D structure from single objects in an unrestricted environment and the
efficient modelling of their surfaces are extremely difficult tasks. However, modeling objects is a
very important issue in model-based video coding as the complexity of analysis and synthesis
depends on the adopted model. Therefore, at present, 3D model-based video coding is just applied
for coding head-shoulder sequences [LI-1993]{PEAR-1995]. 3D model-based video coding has
another disadvantage that it is very sensitive to channel errors [WORRALL-2002]. As the
transmitted parameters will be employed by the decoder to synthesise the original frames, the

error of these parameters will affect the final synthesis performance.
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Much research has also focused on 2D model-based video coding [ALTUNB-1997] [TEKALP-
1997]. Compared with 3D model-based video coding, 2D model has several advantages:
e 2D model-based video coding is rather universal and not limited to head-shoulder

sequences. 2D mesh models (unlike 3D wireframe models) can be easily designed for
arbitrary scenes.

2D parametric motion estimation is a better-posed problem than 3D motion and structure

estimation. Therefore, the analysis process of 2D model-based video coding is much easier
than that of 3D model-based video coding.

Although a priori knowledge of objects can be used to improve the efficiency of 3D model-based
video coding, it can also be used efficiently to improve 2D model design and object coding.
Research results show that 2D model-based coding with affine / perspective transformation and
triangular mesh models can simulate almost all capabilities of 3D model-based approaches using

wireframe models at a fraction of the computational cost [ALTUNB-1997] [TEKALP-1997].

1.2 Objective and overall project description

The objective of this thesis is to develop an efficient scalable 2D model-based video coding
scheme, which tries to achieve scalable video coding with high compression efficiency and
improve the scalability of model-based video coding. The application of 2D object model is to
overcome the reduced generality of 3D object model. Moreover, research results show that 2D
model-based coding can simulate almost all capabilities of 3D model-based approaches at a
fraction of the computational cost. The investigation of scalable coding is to increase the
robustness of transmission of the generated bitstreams, which also facilitate the achievement of

new functionélities, such as Universal Multimedia Access (UMA) [BORMANS-2003].
To achieve this objective, the overall project will include the following parts:

e Video segmentation and scalable modelling

Video segmentation and modeling are one of the important steps to achieve model-based
video coding. In order to model the video frames using video objects, accurate and semantic
video segmentation is necessary and important. Currently, much research has been

conducted for video segmentation. Most segmentation algorithms use the low-level
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features, such as motion or colour information, to distinguish the video object from a video
frame. The main problem of these algorithms is the accuracy of segmentation results.
Further research is required to achieve accurate (semi-) automatic and semantic video
segmentation. In order to improve the coding performance of 2D model-based video
coding, a priori knowledge of special objects, such as human face, can be employed. To
achieve this, face detection and facial feature extraction is also investigated in this project.
After getting the video objects, scalable object modelling is also an important step for 2D
model-based video coding. The designed object model should represent the object model

motion precisely. The accuracy of modelling will affect its compression performance.

Scalable compression of ebject model

Scalable object model compression is one of the major issues in scalable 2D model-based
video coding scheme. In this project, the compression of object model includes both interior
model compression and model contour compression (or shape coding). In shape coding,
content-adaptive arithmetic encoding (CAE) and chain coding techniques are widely used.
The CAE scheme is well integrated into the current MPEG-4 scheme. Commonly, it costs
several kbits to encode the model of each object. For scalable shape coding, the CAE
technique shows a visually annoying staircase effect [BRADY-1997]. Further research is

needed to improve the encoding performance and scalability of object shape.

Scalable texture coding of video objects

Scalable texture coding is another major issue in scalable 2D model-based video scheme, In
past decades, there have been continuous efforts in developing techniques for arbitrarily
shaped video objects. In MPEG-4, shape-adaptive DCT (SA-DCT) scheme is used to
encode the texture of video objects. However, there are several disadvantages of the SA-
DCT technique. First, it inherits the blocking effect from the DCT. Second, in the
implementation of SA-DCT, the alignment of the coefﬁ.cients destroys the spatial
correlation to some extent. Therefore, the coding efficiency is degraded. Experimental
results show that SA-DCT performance is inferior to that of shape-adaptive wavelet-based
scheme [SHIPENG-2000]. Recently, many wavelet-based texture-coding algorithms have
been extended to shape-adaptive object texture coding [EGGER-1996] [KIMJ-1998]

[SHIPENG-2000]. Further research is necessary to improve its coding efficiency as well as
its scalability.
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1.3 Source Material and Performance Evaluation

The colour video sequences used in the performance evaluation of the simulated techniques and
algorithms are the conventional ITU test sequences. In order to test the efficiency of the
developed scalable 2D model-based video coding algorithmns, various test sequences with
different properties have been utilised, such as Foreman, Carphone, Claire, Akiyo, News,
Motr_dhtr, Coastguard sequences. For Foreman, Carphone, Claire and Akiyo sequence, human

face is considered as a separate object and modelled separately, which is different from News,
Motr_dhtr and Coastguard sequences.

On the other hand, to evaluate the performance of the proposed video coding algorithms, both
subjective and objective methods have been adopted. The performance of the considered video
algorithin can be evaluated by simply comparing the original and the reconstructed video
sequences. However, the subjective evaluation is more desirable even though it requires a number

of users to spend much time to view and compare a number of different decoded video sequences.

The most common objective method for comparing video quality is to use the Peak-fo-peak
Signal to Noise Ratio (PSNR) equation. This equation for PSNR is shown below:

2
PSNR =10log;, 295

(LD
(7 B e )26

where M and N stand for the dimension of the video sequence. For QCIF (Quarter Common

Intermediate Format) sequence, these variables are always 176 and 144.

For a fair performance evaluation of a video-coding algorithm, the bitrate must also be included.
The output bitrate of video coders is expressed in bits per second (bits/s). Since the bitrate is

directly proportional to the number of frames per second, the frame rate should also be mentioned
during the evaluation process.
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1.4 Original Achievements

A number of publications and patents have been produced as a result of the research that is

described here. These papers and patents are listed in Appendix A. In this thesis, work that is
believed to be original can be summarised as:

Video segmentation: A video segmentation scheme is proposed in our research. We
formulate the video segmentation as two sub-problems: semi-automatic video object
extraction from the first video frame, and automatic video object extraction from the video
sequence based on the available object model. A complexity-scalable contour-tracking

algorithm is proposed, which makes the segmentation robust to large motion pattern and
partial occlusion,

Face detection and modeling: Face detection and facial feature extraction (including eye,
mouth and chin) are extensively investigated. An automatic face detection algorithm is
proposed to robustly extract the facial features automatically, After that, a heuristic scalable

2D face model scheme is developed to construct the model using the facial features and
facial muscle distribution.

Scalable shape coding: Both intra- and inter- shape-coding schemes are extensively
investigated. A scalable approximation scheme is proposed to present the object shape, in
which curvature scale space (CSS) image is used to get the contour salient features. A novel
scalable intra-shape coding scheme is developed in which the information from the coarser
encoded layers is employed to improve the coding efficiency of the current layer. A
predictive scalable shape-coding scheme is also proposed to improve the coding efficiency
further due to the use of temporal information. In the predictive shape-coding scheme,
contour motion is estimated through CSS image matching. Experimental results

demonstrate that the proposed shape coding algorithms can achieve better R-D
performance.

Wavelet-based object texture intra-coding: An improved shape-adaptive SPECK algorithm
is proposed to improve the coding efficiency of the original shape-adaptive SPECK
algorithm [LU-2001], in which context-adaptive binary arithmetic codec (CABAC) is
incorporated. Experimental results show the efficiency of the improved algorithm. It is

about 0.1-0.4 dB improvements when compared with the original shape-adaptive SPECK
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algorithm. The proposed algorithm is used to code “I-frame” and residual frames after
motion compensation.

A highly scalable 2D model-based texture-coding scheme is proposed. In this scheme,
lifting-based temporal filtering is conducted for video objects. During temporal filtering,
warping motion compensation is used, instead of blocking-based motion compensation, to
reduce the blocking artefact. After temporal filtering, the object texture and residual frames
are encoded using the improved shape-adaptive SPECK algorithm, A scalable MV
encoding scheme is proposed and rate-distortion optimised bit truncation scheme is
employed to achieve bit allocation among the frames within group-of-picture (GOP). The
proposed scheme can achieve high coding efficiency and exact bit rate control. It can also

achieve temporal, spatial, quality and object scalability simultaneously.

1.5 Structure of Thesis

This first chapter aims to introduce the background and reasons behind the work. It also describes
some of the methodology used to evaluate the compression performance and outlines some of the
original achievements of the work featured in this thesis. The final chapter summarises the
research work that has been performed. It also examines the potential for future research in this

area. A list of publications and patents associated with the author is given in the Appendix A. The
other chapters are summarised below,

1.5.1 Chapter 2

Chapter 2 acts as background for 2D scalable model-based video coding. Main scalable and
model-based video coding techniques are reviewed. First, main video modelling techniques are
discussed, which includes camera, illustration, video object and video scene. Then, both 2D and
3D model-based video coding techniques are reviewed and discussed. After that, main scalable
video coding techniques are reviewed. They are quality scalability, spatial and temporal

scaiaﬁility, fine-granularity scalability, object-based scalability and wavelet-based scalable
coding.

1.5.2 Chapter 3

The third chapter introduces the video segmentation techniques, which is one of the most

important steps for scalable 2D model-based video coding scheme. After reviewing the video
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segmentation techniques, a novel and original video segmentation technique is proposed. The
proposed algorithm includes: semi-automatic video object extraction from the first video frame;
and automatic video object extraction from the video sequence based on contour-tracking
algorithm. A complexity-scalable contour-tracking algorithm is proposed, which makes the

segmentation robust to large motion pattern and partial occlusion. The proposed scheme is
evaluated through extensive experiments.

1.5.3 Chapter 4

Chapter 4 mainly discusses the face detection techniques and scalable face modelling. The
objective of face detection and modelling is to represent the face motion precisely and reduce the
rendering error by using a prior knowledge in human face. After intensive review of state-of-the-
art face detection techniques, an automatic face detection scheme is proposed. The face detection
scheme can localise face, face feature and human chin contour automatically and precisely. After
detecting face features, a heuristic 2-D scalable face model is designed based on the detected face
features and face muscular distribution. Experimental results show that the introduction of

scalable face model can improve the accuracy for model-based motion estimation and
compensation.

154 Chapter 5

In chapter 5, scalable object modelling and model compression techniques are reviewed and
discussed. The scalable object model is divided into two parts: scalable shape contour and
scalable model for object interior. In this chapter, a scalable shape representation algorithm is
proposed in which curvature scale space (CSS) image is used to extract the salient feature of
contour. Both intra and inter shape coding techniques are investigated and a number of innovative

shape coding algorithms are proposed to improve the shape coding performance.

1.5.5 Chapter 6

Chapter 6 mainly presents the algorithms for wavelet-based texture intra-coding of video objecis.
After introducing the principle and structure for subband/wavelet analysis and shape-adaptive
wavelet transform, the author reviewed the main wavelet-based texture coding algorithms, such as
SPIHT, SPECK and EBCOT algorithms. The extensions of these algorithms to object-based
coding are then discussed. An improved object-based SPECK algorithm is proposed by
incorporating Content-adaptive binary arithmetic codec (CABAC) to improve the texture coding
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performance of video objects. This algorithm is employed in Chapter 7 to encode the texture of
“I-frame” and residual frames of video objects.

1.5.6 Chapter 7

In Chapter 7, scalable 2D model-based texture coding scheme is proposed and discussed. The
detailed description of this scheme is discussed after reviewing the state-of-the-art highly scalable
coding schemes. In this proposed scheme, temporal filtering is first conducted by using motion
compensation (MC) and wavelet lifting scheme. Then, warping motion compensation scheme is
discussed and employed during temporal filtering, and a scalable motion vector compression
scheme is proposed. Rate-distortion optimised bitstream truncation is discussed to achieve

arbitrary bitrate coding. Extensive experiments and results are also presented in this chapter.

1.5.7 Chapter 8

The eighth chapter contains the overall conclusions for the thesis, and goes on to make
recommendations for future work.
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Chapter 2

Model-based and Scalable Video Coding:

Overview

2.1 Video modelling

Before digital video processing and coding, we should understand the content of video sequence
and describe them in terms of object motion and other effects, such as illumination changes and
camera motion. In order to relate changes in the real world to changes in the video sequence, we
need parametric models that describe the real world and image generation process, and the
parameters can be estimated from the video sequences. The most important models to describe the
real world are scene, object, camera and illumination models. Depending on the selected models,
the real world can be described with more or less detail and precision. Using image analysis tools,
the parameters of the parametric models can be estimated from the video sequence. The real

world can be reconstructed and approximated using the parametric models and their estimated
" parameters.

In the following sections, the camera model, illumination model, object model and scene model
are discussed. As the selected parametric object model will decide the coding method and affect

the final coding performance and complexity, it will be discussed in detail.

2.1.1 Camera model

The camera model describes the projection of real objects in the real scene onto the image plane
of the real camera. Two kinds of camera model are widely used, They are the pinhole camera

model and the CAHV model (it is defined by C, A, H,, V,, vectors as shown in Figure 2.2) [YAKI-
1978].

The pinhole camera model has been widely used to approximate the projection of real objects on a

real camera target, which is illustrated in Figure 2.1. In this Figure, F represents the focal length

10
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of the camera, and C the focal centre. The projected position x of a 3-D point X is the intersection
of the line connecting X and € with the image plane. Assume that the origin of the 3-D coordinate
system is located at the focal centre and its XY-plane is parallel to the imaging plane. From the

similar triangles illustrated in Figure 2.1 (a), it can be easily concluded that

It
N | >
] B3
[
N~

(2.1)

SIS

X Y
x=Fx—, =Fx— 2.2
or R4 > 2.2)

This relation is known as perspective projection. A notable character of perspective projection is
that the image of an object is smaller if it is further away from the camera. Mathematically, it is

described by the inverse between the projected x, y values and the depth value Z.

Figure 2.1 — Camera model: (a) using perspective projection in a pinhole camera; (b) using

parallel projection as an approximation of a pinhole camera

If the image object is very far from the camera plane, perspective projection can be approximated
by orthographic projection, which is also known as parallel projection (Figure 2.1 (b)):

x=X, y=Y 2.3)

Commonly, as long as the relative depth variation of the object surface is negligible compared to

the distance of the object from the camera, this approximation can be used reliably.

The pinhole camera model with its perspective projection is only an approximation of most real

cameras. It does not consider the misalignment of the camera axis and the image cenire, the low-
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pass filter effect of the finite size aperture of a real lens, the finite exposure time, and other
distortions of the lens.

The CAHV camera model can describe a camera such that the camera motion can be
accommodated and the camera can be calibrated to compensate for geometrical differences

between the pinhole camera model and the real camera. The CAHV model describes perspective

projection for a pinhole camera model using four vectors:

C: Vector to the camera centre;
A: Unit vector in the direction of the optical axis;
Hy: Unit vector in the direction of the horizontal axis of the imaging plane;

Vo: Unit vector in the direction of the vertical axis of the imaging plane;

This geometry is depicted in Figure 2.2.

Centre of .
projection ‘World coordmate

_system

Camera coordinate
system :

| Image plane

A

e Line of sight Sp
|

Figure 2.2 - Perspective projection of a point P in space onto a point p in the imaging plane using

the CAHV camera model [FORSYTH-2003].

Adapting the perspective projection of Equation (2.2) by projecting the vector (P - C) onto the
camera axis 4 and the imaging plane axis Hj and ¥, a point P is projected onto the image point p
according to [FORSYTH-2003]:

r

r~(}) s ;g_—g] | -

The CAVT camera model can characterise a practical camera system by its extrinsic parameters C
and A and its intrinsic parameters Hy, Vo, and F. These parameters enable us to describe an

imaging plane that is off the camera axis, as well as distortion introduced by the optical system.
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Precise knowledge of camera parameters is useful when estimating 3-D shapes and motion from a

video sequence. These parameters can be estimated by using geometric camera calibration
techniques [FORSYTH-2003].

2.1.2 Illumination model

In order to see an object, we need to illuminate the observed scene. Describing illumination and
the reflection of light on object surfaces usually requires complexity models. An illumination

model describes how the light incident on an object influences the reflected light distribution.

In video processing, the illumination model is mainly used to describe the temporal changes in the
video sequence caused by the changing illumination of the real world. The illumination of a
background may change because of an object that moves together with its cast shadow. Since the

object surface reflects light, this reflecting source changes the overall illumination of the scene.

When discussing the interaction of a light source with an object surface, there are three types of
energy involved. First, incident flux refers to the rate at which energy is emitted from the light
source. Second, incident irradiance is the incident flux per unit surface area on the object. Finally,
reflected radiance measures the light energy reflected from an object surface. The distribution of
the reflected radiance C depends on the distribution of incident irradiance E and the object

surface reflectance function 7 at this point. The relation can be described by [WANG-2002]:
CL,V, N, X,t,A)=r(L,V,N, X,t,2)- E(L,N, X 1, 1), 2.5)

where X is the location on the object surface, N is the surface normal vector at the location X,
L is the illumination direction, V' is the viewing direction connecting X to the focal point of the

camera, and A is the wavelength of light [STAU-1993]. The reflectance function # depends on
the wavelet length of the incident light, the surface geometry and material properties.

For an ambient source, it radiates the same amount of energy in every direction at any point.
Hence, it illuminates objects without casting shadows. When the incident light is such an ambient

source and the object surface is diffuse reflecting, the reflected radiance intensity distribution is:

C(x,t,A)=r(X,t,4)-E,(t, ), (2.6)

where E, (¢, 1) represents the intensity of the ambient light at time ¢ [WANG-2002].
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For a point light source, the reflected radiance intensity at X simplifies to [WANG-2002]:

c(x,t,2)=r(X,t,4)- E, (¢, A)max(0, I - N) @2.7)

Assuming that the scene is illuminated by one stationary, distant point light source and an ambient

light, both invariant in time and space, the description of incident irradiance can be represented as:

E(N,2)=E,()+ E,(2)- max(0, L - N). 2.8)

This is the shading model of Phong used in early computer graphics. The model given by
Equation (2.8) has been implemented in an object-based analysis-synthesis coder by Stauder
[STAU-1995]. In the 2-D image plane, he assume that the luminance y at pixel x and time £ is

proportional to the reflected radiance at the 3-D point X corresponding to x ; that is,
W(xest +d,)=k-C(X)=k-r(X) E(N) (2.9)

where % is a constant, and N denotes the normal direction corresponding to X . Thus, the
luminance intensity of a point moving from x; to x;,, (with corresponding surface normals N

and N,,,) fromtime ¢ to ¢+ d,, changes according to:

W(xuut'*'d:):V’(xu’)'EE‘g(lI;'ﬂj)' (2.10)

The simplest and yet most widely used illumination model simply assumes that E(N) is a

constant. In this case, the luminance of a moving point does not change, and
Yt +d,)=y(x,.1) @.11)

This is referred to as the constant intensity assumption. This model is widely used for video

processing applications, including the video coding standards, such as MPEG-2 and MPEG-4.

2.1.3 Object model

The object model describes assumption about real objects. For video coding, the object can be
described by shape, motion and texture models [MUSM-1989]. The texture model describes the
surface properties of an object. Commonly, the texture of an object is described by the colour

parameters, which contain the luminance and chrominance reflectance. Since we usually assume
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constant intensity according to Equation (2.11), the colour parameter corresponds to the image
signal y/(x,‘) . Commonly, different object models, such as 2D object model and 3D object model,

use the same texture model, while employing different motion and shape models. In the following
sections, different shape models and motion models will be introduced.

2.1.3.1 Shape model

The shape of a 3D object is described by the 3D space that it occupies. Object shapes can be
convex, or concave. They can also have holes. It is commonly assumed that an object is
topologically connected; that is, that a path can be drawn from any point in the object to any other

point without leaving the object. Commonly, the shape of object is described by its surface. Often,
a mesh of polygons, referred to as a wireframe, is used.

For a mesh of triangles, it is put up by vertices referred to as control points. In addition to these
control points, a list is needed to define which control points define the triangles. The control
points of a wireframe are located on the object surface. The number and location of control points
are determined by the object shape, as well as the accuracy with which the wireframe model is to
describe the object shape. If control points cannot be moved independently, the object is rigid and
cannot change its shape. Otherwise, the object is flexible and can change its shape.

When a real object is projected onto the image plane, the shape of a 3D object is projected as a 2D
object contour, Similar to 3D object shapes, the number and location of control points along the
object contour determine the accuracy of the projected shape. However, a 2D shape cannot be

used to decide whether the 3D object is flexible or rigid. When a rigid object is moving, its 2D
shape may change.

2.1.3.2 3-D Motion model

The motion of a rigid object can be described in terms of a franslation vector T = (T, s T T )T and

a rotation matrix [R] The translation vector T describe a displacement of a point from X to X'

by T, T,, T, in the directions of the coordinate axes X , ¥, Z, respectively:

X'=X+T. (2.12)
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If an object rotates around the origin of the 3-D space, we describe the motion of its points with
the rotation matrix [R]:

[R]=r. )2, I&,] @.13)

where [R,], [Ry], and [R, | are the rotation matrices around the axes X, ¥, Z.

These individual rotation matrices are;

10 0

[R.]=|0 cosg, —sing, |, (2.14)
|_0 siné, cos @,

cosf, 0 -—sind,

BRIl o 1 o | (2.15)
siney 0 cosf,

and

cosd, -—sinf, 0
[R,]=|sing, cos6, © (2.16)
0 0 1

If we consider both translation and rotation, the motion of a point on the object surface from X

to X' can be expressed as:

X'=[R]- x+T (2.17)

Equation (2.17) rotates the point X on the object surface around the centre of the world

coordinate system, In the case that the object rotates around its own centre only, the object motion
can be represented as:

x'=[Rl-(x-¢c)+T+C (2.18)

where C = (C,, Gy, Cz) is the coordinate of object centre,

From the above analysis, we can find that the object motion can be described by the parameters
A= (Tx, T,,1;,6,,6,,0, ) For a rigid object, the shape does not change when it is moved with

parameter set 4.
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Not all real objects are rigid. One way to describe a flexible object is by decomposing it into two

or more rigid components. Each object has its own set of motion parameters A according to
Equation (2.18).

Alternatively, flexible objects can be described by superposing small local motion onto the rigid
motion parameters. For example, if we have a sailing ship with a flag, the ship motion can be
described using a set of rigid parameters and local motion model is used to describe the waving of
its flag in the wind, Since flexible objects change their shape due to local motion, it is not obvious
whether this change should be described by shape or motion parametets.

2.1.3.3 2-D motion model

Object or camera motion in 3-D leads to 2-D motion. The 2-D motion model depends not only on
the 3-D motion model, but also on the illumination and camera models. The most important 2-D

motion model is projective mapping, which is often approximated by affine or bilinear mapping,

As we know, the 3-D positions of any object point before and afier a rigid motion are related by

X'l |ln n niX| |T,

Y |=ln n Y |+|T, 2.19)
Z, ¥y rs g Z Tz

Substituting Equation (2.2) into Equation (2.12), the relation between coordinates before and after
the motion can be described as:

(r,x+r2y+r3F) Z+T.F

Cx+r8y+r9F) Z+T,F @20)
_ s, (rax +rsy + 7 F)- Z+T,F )

(r7x+r8y+r9F) Z+TF

When there is no translational motion in the Z direction, or when the imaged object has a planar

surface, it is easy to show that Equation (2.20) can be simplified into the following eight-
parameter proj ective mapping:
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x,= ayp +a1x+a2y
l+ex+eyy
by +bx+byy
l+ex+cyy

(.21)

The projective mapping is an important relation in the study of motion between two video frames,
or equivalently the registration of two video frames. It models exactly the relation between images

of the same object after camera or object motion, if either of the following is true:

(1) The object has a planar surface;

(2) Neither the object nor the camera undergoes translation along the Z -axis.

In practice, in order to circumvent the problem caused by its rational form, the projective mapping
is approximated by polynomial mapping, such as affine mapping, bilinear mapping, biquadratic
mapping and pseudo-perspective mapping. They are listed in the Equation (2.22) — (2.25),
respectively.

x"— x| - [aq +ayx+ azy] (2.22)
V' =y by +bx+byy .
[x'—~x]_[ap+ax+ayy+asxy] (2.23)
Y-y __bo+blx*'b2y+b3xy '
-x' —x- y | -ao +ax+ayy +a3x2 +G4}’2 +asxy (2 24)
V' =Y] | by +byx+byy+byx? +byy? +bsxy

(%' - %] . Hao +01x+02y+‘13’0’+bsx2 (2.25)
L_y’_'y_ LbO +blx+b2y+b3xy+a3y2 1

2.1.4 Scene model

The scene model describes how the moving object and the camera of a 3-D scene are positioned
with respect to each other. There are three kinds of scene model, which are named as 2-D scene

model, layered 2-D scene model (or named as 2.5-D scene model), and 3-D scene model, with
different level of complexity [WANG-2002].

The 3-D scene model allows description of object motion and occlusion, as well as cast shadows.

It can realistically describe the real world. If the objects are in motion, we distinguish between
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four image areas: static background, moving object, uncovered background region, and newly
covered background (or occluded regions).

Figure 2.3 shows two image frames with a moving object. Comparing frames k and k+1, we
can distinguish the changed and unchanged regions. The unchanged regions show the static
background in both images. The moving object is part of the changed regions in image & and
k+1. In frame k&, the change region is defined as the area of the moving object, and the
background to be covered in frame k+1 due to the object motion. In frame k+1, the changed

region is defined as the area of the moving object and the uncovered background that was not

visible in frame % .

r" X
T —-—{=——— Changed region —0-:-:—— Unchanged region
Moving | Background o
i object I he covered
rﬂ———-——'—‘ﬂ-—*—-—ﬁ

| | 1

Frame K

——— . — — — —

Frame k+1

|
Uncavered | 1 :
Background | 2 ! object |
' [

ey
L2

Figure 2.3 — The separation of changed areas into moving objects, uncovered background, and

background to be covered [HOTT-1988].

3-D scene model can be simplified as a scene with layered 2-D objects, which is called as 2.5-D
scene model. In this model, the camera model uses orthographic projection instead of perspective
projection, Therefore, depth has no effect on the image of this scene. This model does not allow

the description of effects due to 3-D motion. MPEG-4 standard supports layering of video objects
and the layered 2-D scene model.

The simplest 2-D scene model is used in the video coding standards, such as H. 263, MPEG-2,
and H. 264, It assumes that all objects are flat and lay on the same image plane and 2-D objects

are limited to motion in a 2-D plane. This scene model is useful for video processing.
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2.2 Model-based video coding

In past decades, much research has been conducted into the use of object models in video coding
and many model-based video coding schemes have been proposed. Different from various
conventional waveform coding methods, in which 2-D waveforms of image signals are efficiently
compressed, model-based video coding represents image signals using structural object models
which in some sense take into account the 3-D properties of the scene. Based on the applied
object model in the published schemes, three different scenarios for model-based video coding
can be classified: 3D model-based methods [DIEH-1991] [KOCH-1993] [AIZA-1989], 2D
model-based methods [NAKAYA-1994] [GERKIN-1994] [WANG-1994], and hybrid 2D/3D
model-assisted methods [EISERT-2000]. Various published papers, such as [MUSM-1989],
[ATZA-1995], and [PEAR-95], give a detailed review of model-based video coding approaches.

2.2.1 3D model-based video coding

3D model-based coding is a rather specific approach to model-based coding which utilizes a 3-D
model of a person’s face. In these approaches, 3-D structural models of scenes are adopted. There
are two kinds of major approaches to 3D model-based schemes: Approach I makes use of surfaces
of the object modelled by general geometric models such as planes or smooth surface [DIEH-
1991] [HOTT-1989] [MUSM-1989]; Approach II utilises a parameterised model of the object,
such as parameferised facial models [AIZA~1989] [LI-1993].

In Approach I, information such as surface structure and motion information are estimated from

image sequences and utilised in video coding. These approaches have been applied, together with

motion compensation and interpolation, to improve the performance of the first-generation video .

coding method, which includes predictive coding, transform coding, vector quantization, etc.

In Approach II, parameterised models are usually given in advance. In these schemes, video
sequences are analyzed to estimate the parameters of these models. These parameters are
compressed and are sent to the decoder, which uses these parameters to render the video
sequence. One of the problems of this approach is that automatic modeling and analysis is not an
easy task. Up to now, most of the contributions to 3-D model-based coding have focused on head-
shoulder sequences and the parameterized face model. In these methods, automatic facial motion
analysis has been done under restricted conditions (e.g. the initial position of the face is known).

The extracted facial animation parameters (FAP’s) are compressed. Choi et al [CHOI-1994] and
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Li et al [LI-1993] reported a direct estimation of head and facial movements, which do not require
feature point correspondence. G. Bozdagi, et al [BOZD-1994] described a novel formulation
where 3-D global and local motion estimation and the adaptation of a generic wireframe model to
a particular speaker are considered simultancously within an optical flow based framework

including the photometric effects of the motion. For all of these methods, heavy computational
complexity is required.

Compared with 2D model-based coding approaches, 3D model based video coding schemes have
several disadvantages:

e Obtaining detailed object models from a general scene is extremely difficult;

¢ The adaptation of face models to a particular human face in the sequence is very
complicated and time-consuming;

e The analysis process in the video encoder is too complex to get the data required to

synthesize the image in the decoder. This is not suitable for handheld mobile devices;
‘o 3-D object model is very sensitive to channel errors during the transmission.

2.2.2 2D model-based video coding

Currently, 3-D model-based video coding is too rigidly object-specific because the extraction of
3-D structure from single objects in an unrestricted environment and the efficient modelling of
their surfaces is an exiremely difficult task. Modelling objects is the most important issue in
model-based video coding as the complexity of analysis and synthesis depends on the adopted
model. Up to now, most of the contributions to 3-D model-based video coding have focused on

human facial images, and the parameterised facial models are utilised in advance.

In order to cope with the generality problem of 3D model-based video coding approaches, many
2D model-based video coding methods have been introduced [HOTT-1990] [NAKAYA-1994]
[SALE-1995] [ERYU-1995] [CZEREPINSKI-1997]. The 2-D model based coding schemes are
rather general approaches. These coding methods exploit visibly important 2-D features, such as
edges, contours and regions. In the case of video sequences, moving regions that are detected as

changing areas between two successive frames are modelled and coded as arbitrarily shaped 2-D
objects [HOTT-1990].
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In 2D model-based video coding, both rigid and flexible regions are used for modelling 2-D
moving areas. The motion models are not limited to the simple translation model. They exploit
affine transform and bilinear transform in order to better approximate the fields of a 3-D moving
rigid object and linear transformation such as rotation and zooming. Deformable triangular
segmentation of the image and affine transform based motion model are also employed
[NAKAYA-1994]. The 2-D deformable triangle-based method divides images into triangle blocks
and makes use of an affine motion model. The affine motion parameters of each triangle are
uniquely determined by the displacement of its grid points so that no additional information needs

to be transmitted except displacement vector of triangle nodes. Motion compensation is performed
as follows:

1. Covering the current frame by triangular patches;

The advantages of the friangle-based motion compensation are: (1) it can deal with linear
deformation such as zooming and rotation; (2) it well approximates the motion field of a
3-D moving object; (3) it effectively avoids block artifacts. However, the triangle-based
warping motion compensation techniques may suffer from strong inhomogeneous motion,
e.g. very fast moving objects, leading to “warping artefact” as reported in [OHM-1996].

Overlapped block motion compensation (OBMC) can be applied to deal with such errors
[HEIS-2001]. '

2. Estimating the motion of the grid points;

Synthesizing the prediction image by mapping (warping) the texture of the previous
frame onto the corresponding patches of the current frame.

A. M. Tekalp, et.al [TEKALP-1997] compared 2-D and 3-D model-based video coding methods
in terms of their capabilities and performance (peak signal-to-noise ratio and visual image quality)
for very low bit-rate video coding. The results show that 2-D model-based video coding with
affine/perspective transformation and triangular mesh models can simulate almost all capabilities

of 3-D model-based approaches using wireframe models at a fraction of the computational cost.

2.2.3 Hybrid model-assisted video coding

The combination of traditional hybrid video coding methods with model-based coding has been
proposed by Chowdhury et al. in 1994 [CHOWD-1994], which is called as Aybrid model-assisted
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video coding. A switched model-based coder is introduced that decides between encoded output
frames from an H.261 coder and a 3D model-based coder. The coding mode decision is done for a
complete frame and therefore the information from the 3D model cannot be exploited if only parts
of the frame cannot be described by the model-based coder. An extension to the switched model-
based coder is the layered coder proposed by Musmann in 1995 [MUSM-1995]. The layered

coder chooses the output from up to five different coders, and the coding mode decision is done
framewise or objectwise.
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Figure 2.4 — Structure of the hybrid Model-aided video coder [EISERT-2000].

In 2000, Eisert P, et al. [EISERT-2000] proposed a hybrid model-aided video coding, which is an
extension of an H.263 video codec that incorporation information from a model-based coder in a
novel way. Instead of exclusively predicting the current frame of the video sequence from the
previous decoded frame, motion compensated prediction using the synthesized output frame of
the model-based coder is also considered. In this approach, both traditional waveform coding and
3D model-based coding are combined such that the generality of waveform coding and the
efficiency of 3D model-based coding are available where needed. The model-based coder uses a
parameterised 3D head model, which consists of shape, texture and the description of facial
expressions, Motion and deformation of the 3D head model constitute facial expressions which

are represented by facial animation parameters (FAP’s) based on the MPEG-4 standard {[MPEG-
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1999]. For synthesis of facial expression, the transmitted FAP’s are used to deform the 3-D head
model. Since only a few parameters are encoded and transmitted at very low bit rates, typically
less than 1 kbits/s, are obtained if the 3-D models can describe the current video frame,
Experimental results proved that the model-assisted video coding scheme could achieve bit rates
as low as 5 kbps with good video coding performance.

2.3 Scalable video coding

The aim of model-based video coding is to optimise the coding efficiencies for a fixed bit rate.
This presents a difficulty when multiple users try to access the same video through different
communication links, If the video stream is scalable, the user with high-bandwidth connections
can download the entire bit stream to view the full-quality video, while the users with low-
bandwidth will download part of the bitstream and see the low-quality presentation. Scalability

refers to the capability of recovering physically meaningful image or video information by
decoding only partially compressed bit streams.

A scalable stream can also offer adaptivity to varying channel error characteristics, and computing
power at the receiving terminal. For wireless communications, scalability allows the adjustment
of the source rate and the application of unequal error protection in response to channel error
conditions. For internet transmission, scalability enables variable-bit-rate transmission, selective
bit discarding, and the adjustment of the source rate to correspond to different modem rates, and
diverse device capability. As we move to the convergence of wireless, Internet, and multimedia,
scalability becomes increasingly important for rich media access from anywhere, by anyone, at
any time, with any device and in any form, Due to its importance, scalable video coding is being
intensively investigated owrrently [MPEG-2003). However, the coding efficiency of scalable
video coding is still not superior to the nonscalable video coding techniques. Therefore, the design

goal in scalable video coding is to minimise the reduction in coding efficiency while realising the
requirement for scalability.

The scalabilities include quality or SNR scalability, spatial scalability, temporal scalability, Fine-

Granularityl scalability and object-based scalability, which will be discussed in the following
subsections.
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2.3.1 Quality scalability

Quality scalability is defined as the representation of a video sequence with varying accuracies in
the colour patterns. This is typically accomplished by quantising the pixel values with

increasingly fine quantisation stepsize. This type of scalability is also referred to as SNR
scalability.

During encoding for quality scalability, the first layer is obtained by applying a coarse quantiser
to the original image (or in transformed domain). The second layer contains the quantized
difference between the original image and that reconstructed from the first layer, using a quantiser
that is finer than that used to produce the first layer. Similarly, each of the subsequent layers
contains the quantised difference between the original image and the one reconstructed from the
previous layer, using an increasingly finer quantiser.

Base-layer
compressed
bit steeam

Enhanced-layer
compressed
bit steeam

‘Bage-layer
Base-layer
2 ;1‘:!3:::4 decoded video
+ Enhancoidayen., Enhanced-layer
comp i decoded video
. -bit stream <. e

Figure 2.5 — A two-level quality-scalable codec: (a) encoder, (b) decoder

An encoder and decoder with two-level quality scalability are depicted in Figure 2.5. In the

enhanced level, a smaller quantisation parameter is used to achieve better quality than the base
level,

2.3.2 Spatial and temporal scalability

Spatial scalability is defined as the representation of the same video in varying spatial resolution.

To produce such a layered bit stream with spatial scalability, a multiresolution decomposition of
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the original image is first obtained. The lowest-resolution image is coded directly to produce the
first layer. To produce the second layer, the decoded image from the first layer is first interpolated
to the second-lowest resolution and the difference between the original and the interpolated image
at that resolution is coded. The bit stream for each of the following resolutions is produced in the
same way: first an estimated image at that resolution is formed, based on the previous layers, then

the difference between the estimated and the original image at that resolution is coded.

Figure 2.6 shows a block diagram of a two-layer spatially scalable codec. Since the enhanced

layer use a smaller quantization parameter, it achieves higher quality than the base layer.
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Figure 2.6 — A two-level spatial/temporal scalable codec (a) encoder, (b) decoder

Temporal scalability is defined as the representation of the same video in varying temporal
resolution or frame rates. Temporal scalability enables different frame rates for different layers of
the contents. Typically, temporally scalable video is encoded in a way that makes use of
temporally upsampled pictures from a lower layer as a prediction in a higher layer. The codec to
achieve temporal scalability has a similar structure as that to achieve spatial scalability, as shown
in Figure 2.6. The only difference is that the spatially scalable codec uses spatial down-sampling

and spatial up-sampling, whereas the temporally scalable codec use temporal down-sampling and
temporal up-sampling,.
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2.3.3 Fine-Granularity scalability

Fine-granularity scalability (FGS) refers to a coding method by which the rates as well as the
quality increase with much smaller steps. In the limiting case, in which a bit stream can provide
continuously improved video quality with every additional bit, the underlying coding method is
called embedded coding. It is obvious that FGS and embedded coding can adapt to bandwidth

variations in real networks more effectively than other scalable methods.

In practice, the requirement that the bit stream has fine granularity is often relaxed. A base layer
may be first produced to provide a low but guaranteed level of quality, and then an enhancement
layer may be generated to provide improvements in fine granularity. This is the method employed
in the FGS model of MPEG-4 [LI-2001] [SCHA-2001]. In this case, the conventional block-based
hybrid coding method is employed to produce a base-layer stream at a given frame rate, using a
relatively large Quantisation Parameter (QP). Then, for every coded frame, the differences
between the original DCT coefficient and the quantised coefficients in the base layer are coded in
to a fine-granularity stream. This is accomplished by quantising the refinement coefficients using
a very small QP and then representing the quantised indices through successive bit plane
encoding. Figure 2.7 illustrates the transmission of portions of the enhancement-layer stream for
the support of joint quality-temporal scalability [SCHA-2000a].

Enhancement layer

Portion of enhancement
A L R } s L e 0 X layer transmitted
e = — — -y
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Figure 2.7 — Illustration of the transmission of the enhancement-layer stream [SCHA-20002]

The limitation with FGS scheme is that the base layer must be delivered completely and without
error. This may or may not be possible in practical networks. Another problem is that, when the
base-layer bit rate is kept low (so as to increase the scalable range of the bit stream), the coding

efficiency of the FGS method will be significantly reduced compared to a nonscalable coder. One
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approach to improving the coding efficiency of the FGS method is to periodically use an
intermediate enhancement layer (reconstructed from some but not all bit plane) as a reference for
motion-compensated prediction [WU-2001]. Furthermore, it is difficult to use block-based

transforms to realize fully embedded coding. Much research has been conducted for wavelet-
based coding to achieve this (see section 2.3.5).

2.3.4 Object-based scalability

Object-based scalability is also important for the video format to facilitate content manipulation.

In object-based temporal scalability (OTS), the frame rate of a selected object is enhanced such
that it has a smoother motion than the remaining area.
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Figure 2.8 — OTS enhancement structure [MPEG4-2001]
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Figure 2.8 shows an example of OTS, which uses bidirectional prediction to form bidirectional
VOPs (B-VOPs) in the enhancement layer. In this figure, VOLO (VideoObjectLayer 0) is an
entire frame with both an object and a background, whereas VOL1 represents the particular object
in VOLO. VOLO is encoded with a low frame rate, and VOLI1 is coded to achieve a higher frame
rate than VOLDO. In this example, frames 2 and 4 in VOL1 are predicted from frames 0 and 6 in

VOLO. Two additional pieces of shape data, a forward shape and a backward shape, are encoded
to perform the background composition.

2.3.5 Scalability with wavelet-based coding

The discrete wavelet transform (DWT) has emerged as a powerful tool in image and video

compression, due to its flexibility in representing non-stationary image signals and its ability to
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adapt to human vision characteristics. Wavelet-based image coding techniques have been

included in some image and video coding standards, such as JPEG2000 [TAUB-2000] and
MPEG-4 [MPEG4-2001)].

Like the DCT-based approach, wavelet-iransform-based coding for images consists of three steps:
(1) wavelet transform; (2) quantisation and (3) entropy coding. Wavelet coefficients after wavelet
transform are typically organised into a hierarchical data structure, so that the bit allocation and
data compaction can be employed more efficiently. Quantisation allows the data rate to be
reduced at the expense of some distortions. Entropy coding encodes the quantised coefficient into
a set of compact binary bit streams. When applying wavelets to video coding, mechanisms to
reduce temporal redundancy are needed. Motion compénsation in both spatial and wavelet
domains, 3-D wavelets, and motion compensated 3-D wavelet video coding algorithms have been
proposed [WIEN-2004] [WU-2004]. Especially, motion compensated embedded zero block
¢oding (MC-EZBC), which was recently proposed by Chen et al [CHEN-2002], has become
prominent because of the excellent performance. In MC-EZBC, each pair of frames is first motion
estimated with hierarchical block structure, and then decomposed into a high-band frame and a
low-band frame by the motion-aligned lifi-based Haar filter. MC-EZBC efficiently solves the
problems in the fractional-pel motion aligned temporal transform due to the use of lift-based
wavelet transform [LUO-2001]. Promising experimental results have demonstrated that the 3D
wavelet-coding scheme can be competitive with the state-of-the-art H.264 video standard on

coding efficiency, at the expense of large delay. As the temporal filtering is conducted with one
GOP, this restricts its applications, such as real-time video streaming.

However, there are still many problems to be solved before this coding technique can be
described as mature, First, the compression efficiency of the 3D wavelet coder is still not
satisfactory for video sequences with complex motion patterns. Next, 3D wavelet coder can cause
large time delay due to the use of temporal filtering across one Group of Pictures (GOP). This
restricts some real-time applications, such as real-time streaming and video conferencing.
Furthermore, as more motion vectors are generated during motion compensation (commonly
double), they use up a large portion of bits for low-bit rate application. This requires more

research to achieve scalable MV coding. Therefore, further research is still needed to achieve all
kinds of scalabilities in one codec.

2.4 Conclusions

This chapter gives an overview of video modelling and main techniques of model-based video
coding. It also reviews the main scalable video coding techniques.
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This chapter begins with a description of video model techniques, such as camera model,
illumination model, object model and scene model. This is considered as the theoretical
background of the proposed video coding scheme. All of the video coding schemes should be
based on a special video model. For example, for video coding techniques adopted in MPEG-2
and MPEG-4, the object models assume object with 2-D motion and the illumination models
assume ambient lighting and diffuse reflecting surfaces. These coding standards use 2-D scene
model that assumes 2-D objects moving parallel to the imaging plane of the camera. Therefore,

the selected video modelling techniques decide the properties of the video coding schemes.

Next, model-based video coding approaches are reviewed, which includes 3D model-based video
coding, 2D model-based video coding, and hybrid model-assisted video coding techniques. Both
2D and 3D model-based coding have their advantages and disadvantages. For 3D model-based
video coding, current contributions mainly focus on some special video objects only, such as the
human face. In hybrid model-assisted video coding scheme, both traditional waveform coding and
3D model-based coding are combined such that the generality of waveform coding and the
efficiency of 3D model-based coding are available where needed.

Furthermore, this chapter also gives an overview of scalable video coding. Scalable video coding
techniques are very important for rich media access for different users. Four kinds of scalabilities
are discussed in detail. Wavelet-based coding techniques can easily be made to produce an
embedded stream because the wavelet transform provides a multiscale representation of the

signal. However, more research is needed to reach the coding performance of state-of-the-art non-
scalable video coding technique at all bit rates.
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Chapter 3

Video Analysis and Segmentation

3.1 Introduction

Interactivity with multimedia content is becoming a reality: the user is no longer satisfied being a
passive spectator, and wants more of an active role. With the publication of the MPEG-4
[MPEG4-2001] and MPEG-7 standard [MPEG7-2002], the MPEG committee has made a
significant contribution towards the development of a new generation of interactive multimedia
services. MPEG-4 standard allows the independently encoding of audiovisual objects and MPEG-
7 gives the content-based description of audiovisual materials. Furthermore, advanced types of
interaction are often based on the understanding of a video scene as a composition of video
objects, to which it is possible to assoctate specific information as well as interactive *hooks’ to
deploy the desired application behaviour. To enable such type of interactive services, a
representation of the scene semantics that is no longer limited to the frame concept is required.
The ability to manipulate such entities in video is a shift in the paradigm from pixel-based to

content-based management of visual information.

(b)

Figure 3.1 — Example of the composition of a scene: (a) synthetic object; (b) real object: and (¢)

composed video scene from (a) and (b)

In the old paradigm, a video sequence is characterised by a set of frames. In the new paradigm.

the video sequence is composed of a set of meaningful entities. A wide variety of applications
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benefit from this shift, which range from video coding to video surveillance, and from virtual

reality to video editing — see example in Figure 3.1.

Before introducing the extraction of meaningful entities, the concepts of object and region needed
to be introduced. These two concepts provide the additional organisation units to allow

semantically structured representations — see example in Figure 3.2.

(a) (b) (¢)

(d) (e) ()
Figure 3.2 — Example of semantically structured representations of a video frame. (a) Original
frame; (b) A rectangular set of pixels extracted from (a); (¢) A set of pixels showing the relevant
video object; (d) A segmentation partition of video object (indicated by yellow colour); (e) The

regions of a video object; and (f} The selected video object using the obtained object mask.

In the context of this thesis, a region is defined as a set of neighbouring pixels that, at a given
time instant, are similar to each other according to some homogeneity criteria that can be
objectively measured, and which can be tracked through time during its temporal life span. An
object is associated with a higher abstract level carrying some semantic value in a given
application context, and corresponds to a region or a set of regions. The set of objects and/or
regions that completely cover an image at a given time instant, without overlapping, is the
temporal instantiation of a segmentation partition. Taking a segmentation partition and focusing

on a single object by replacing all other labels by a common value allows the segmentation mask

[9%]
[ 3®]




Chapter 3. Video analysis and segmentation

of that object to be obtained. Usually, segmentation denotes the operation aimed at partitioning
an image or a video sequence into regions extracted according to a given criterion. In the case of
video sequences, this partitioning should also achieve the temporal coherence of the resulting
sequence of object masks representing the video object.

The extraction of the meaningful entities is one of the important steps for the success of scalable
2D model-based video coding scheme. This chapter is mainly devoted to the technique of
extracting meaningful entities. To that purpose, the main video segmentation techniques are first
reviewed and classified in section 3.2. In particular, spatial, temporal and combined spatio-
temporal segmentation techniques are discussed. The role of user interaction for segmentation is
also examined. After reviewing the published video segmentation algorithms, a complexity-
scalable object contour-tracking algorithm is proposed in section 3.3. In the proposed algorithm,
semantic objects are first extracted, and object contour is used as the description of a 2D video
object. Once the object contour in the first frame is achieved through user interaction and/or auto-
segmentation scheme, the contour-tracking algorithm can be applied to segment the whole video
sequence. The efficiency of the proposed algorithm is evaluated using many experiments, as
shown in section 3.4. Section 3.5 gives the conclusions of this Chapter.

3.2 Video segmentation techniques: A review

Segmentation is one of the most important objectives of a video analysis system targeting object-
based coding and description. Unfortunately, a complete theory of video segmentation is not

available. Video segmentation techniques are ad hoc in their genesis and differ in the way they
trade-off one desired property against another.

According to Haralick and Shapiro, image segmentation can be defined as “a process which
typically partitions the spatial domain of an image into mutually exclusive subsets, called regions,
each of which is uniform and homogeneous with respect to some property such as tone, hue,

conirast or texture and whose property value differs in some significant way fiom the property
value of each neighbouring region” [HARA-1994],

The extension of this definition to object-based video analysis requires taking into account the
temporal dimension. The temporal coherence of the segmentation should be guaranteed. Temporal
analysis may be performed by estimating the motion between consecutive frames, thus providing
valuable information to merge regions that are not spatially homogeneous but do belong to the

same object. Also the tracking of partitions is enabled by the temporal information, ensuring the
coherent evolution of the segmented objects with time.
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More powerful and complex segmentation criteria may be introduced by using some priori
knowledge or by accepting user guidance, which depends on the semantics of the application.
This type of information is of major importance in identifying objects semantically relevant to the
application. Other generic criteria, such as size, position, or depth order, for instance, may also

provide useful information for segmentation purposes.

The remaining part of this section presents an overview of available video -segmentation
techniques. These techniques can be classified into two groups: automatic video segmentation and
semi-automatic video segmentation. The discussion of this section is mostly focused on automatic
techniques, as these are the most commonly presented in the literature. Moreover, since the
interaction of the user should always be limited to the minimum, automatic segmentation

techniques are the aims of all segmentation solutions, even those including user guidance.

Automatic video segmentation techniques are typically grouped into three major categories,
depending on the properties looked for to build the image partitions:

e Spatial segmentation — the target regions are homogeneous in terms of their spatial

features. Using the luminance and chrominance information, measures such as average
and contrast, are computed to find homogeneous regions. These techniques are commonly

unable to deal with the temporal homogeneity aspects of the content.

Temporal segmentation — the target regions are homogeneous in the temporal (motion)
dimension. These techniques usually operate on estimated motion vector fields, and are

able to produce temporal coherent partitions, but they cannot identify static objects (or
parts of objects).

Combined spatio-temporal segmentation — the target regions are homogeneous both in the
spatial and temporal motion dimensions. These techniques allow overcoming many

limitations of the spatial and temporal segmentation techniques.

Depending on the specific techniques and related principles used for the segmentation, a further

level of classification for the automatic video segmentation techniques is proposed:

o Spatial segmentation — various types of spatial segmentation techniques can be

considered, depending on the application addressed. The various techniques may also
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have different degrees of complexity. The main classes of spatial segmentation techniques

Thresholding — these are simple segmentation techniques that identify regions mainly
based on the analysis of image histograms [HARA-1992)].

Texture-based ~ these techniques are based on the detection of regions with
homogeneous textural characteristics. The type of techniques employed is usually

effective in detecting highly textured regions [REDN-1984] [OCON-1997] [HILL-
2003] [CALLAGHAN-2005].

Edge-based — these techniques first detect the edges present in the image, and then

process the regions to build an image partition [BALL-1982} [JAIN-1989] [PRAT-
1991].

Regions-based — these techniques can be seen as the dual of the edge-based
techniques, as they directly detect homogencous regions in the image, which are
separated by a set of edges. The tools employed differ from those used in texture-
based techniques, where the separation between regions is not mainly imposed by the
presence of edges. Often region merging and splitting techniques are used [HORO-
1976] [MEYE-1990] [HARA-1992] [CORT-1995].

Temporal segmentation - mainly two types of segmentation techniques can be
considered, depending on the application targets:

Change detection — these techniques target the identification of the areas that change
(or not) between successive images, and are not able to identify objects with different
motion characteristics [HOTT-1988] [MUSM-1989] [AACH-1993] [MECH-1998].

Motion segmentation ~ these techniques are based on motion homogeneity criteria,
such as the velocity field values; in this case, multiple moving objects can be

identified even if they have similar texture [BOUT-1993] [WU-1993] [WANG-
1994b] [WEIS-1997].

Combined spatio-temporal segmentation — depending on the way the spatial and temporal

information is processed, various types of segmentation techniques are identified:
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o Temporal after spatial — a spatial segmentation can be improved by considering also
temporal information. For instance, several regions can be merged into the same

object if they share common motion characteristics [CHOI-1997].

o Spatial after temporal — these techniques refine the temporal segmentation resulis

using spatial information. For instance, region confours can be corrected, or

temporally uniform regions can be split according to their spatial characteristics
[MECH-1998] [KIM-1999].

o Temporal and spatial together — these techniques perform the segmentation by

simultaneously considering temporal and spatial information [SALE-1994] [MOSC-
19981.

The various video segmentation algorithms identified above are discussed in the following
subsections.

3.2.1 Spatial segmentation

Spatial segmentation techniques consider each image by itself even if it belongs to a video
sequence. A segmentation partition is produced based only on the spatial features of each image
and, in particular, motion information is not taken into account. No information from previous
frames and subsequent frames, that is, no motion information is used during segmentation. As a

consequence, spatial segmentation cannot generate time-coherent partitions.

3.2.1.1 Threshold segmentation

Threshold segmentation techniques are mainly based on the selection of an adcquat;: (set of)
Separation level(s), i.e., threshold(s), in order to identify areas with different properties in the
histogram of some image component, and split the image accordingly. Pixels are allocated to
regions depending on the range of values in which they lie, considering the values for the

luminance component. This is a very simple approach to the segmentation problem, which can
generate accurate results for simple image.

Given an input image I, a simple two-level segmentation algorithm consists in generating an

output image O by comparing each luminance pixel with a pre-defined threshold T :
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This technique, when applied to simple images with a carefully selected threshold, can result in
the effective separation of the target objects from a background with a different brightness level.

The selection of the threshold values is not an easy task in order to obtain good segmentation
results. It can be done manually or automatically based on global and/or local characteristics of
the image. A number of methods for choosing image segmentation thresholds can be found in the

literature [HARA-92]. The most popular method is by analyzing the image histogram peaks and
valleys.

Segmentation by clustering can also be classified into the Thresholding category, although. the
threshold doesn’t need to be calculated. An image is represented in terms of clusters of pixels that
belong together. The specific criterion to be used depends on the application. Pixels may cluster
together because they have the same colour; they are nearby; and so on. Simple clustering
methods, X -means clustering methods and Graph-theoretic clustering [SHI-2000] [BOYKOV-
2001] can be used in this segmentation technique. Based on the properties of the clustering

algorithm, the segmentation by clustering can be considered as a general form of threshold
segmentation algorithm.

The main advantage of threshold segmentation techniques are their low computational cost, and
their effectiveness in segmenting objects that are clearly distinct from each other in some
component dimension. The main drawbacks of thresholding techniques are that a large number of
(small) regions are generated for textured images, and in some cases, important local spatial
relationships are ignored within the image.

3.2.1.2 Texture-based segmentation

Texture-based segmentation techniques have the objective of building a partition in which each
region is differently but uniformly textured. Texture is not only related to the way surfaces reflect
light, expressed by the luminance and chrominance values, but also to characteristics such as the

spatial distribution of tones (or colour) along the image — examples of textures are shown in
Figure 3.3.

Texture-based segmentation techniques generally use pattern recognition tools for textural feature

extraction and classification. These segmentation techniques can be based on optimization or
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probabilistic moedels, such as Markov random fields and Bayesian estimation. Other techniques
consider statistical models for regions, built by means of some initialization process and rely on
methods like the expectation-maximization algorithm to cluster pixels according to the region

models [REDN-1984] [OCON-1997].

The main advantage of texture-based segmentation techniques is their ability to detect
homogeneous although highly textured regions. This is not possible to be achieved using other
segmentation techniques that do not understand the notion of texture and tend to create over-
segmented partitions. However, these techniques usually have a high computational cost and only

use spatial information.

(a) (b)
Figure 3.3 — (a) Example image composed by 16 different texture samples, and (b) the

corresponding segmentation partition.

3.2.1.3 Edge-based segmentation

Edge-based segmentation relies on boundary or edge detection techniques. These techniques try to
find discontinuities in some properties of the pixels, such as grey level, colour, or some local
measure, to identify the boundaries between regions. Edge-based segmentation techniques usually

perform several major steps:

e Edge detection — this step is typically performed by means of edge detection operators.
The outcome of these operators indicates the likelihood of each pixel belonging to an
edge, and does not directly correspond to a partition of the image, since multiple edge
candidatures may be found close to each other and the resulting edges are usually not

connected.
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e [Edge selection — this step takes the output of the edge detection step and selects the most
relevant edge segments. The detected edges are processed and the corresponding pixels
are classified as edge or non-edge. A cleaner and sharper edge image results from this
procedure. Edge selection can be achieved by applying Thresholding and/or edge
relaxation techniques [BALL-1982] [JAIN-1989] [SONK-1993].

¢ Region boundary identification — this step takes the selected edges and combines them
into closed chains, which define the boundaries of the regions in the image. After this
step, pixels not separated by an edge are considered as belonging to the same regions.
Several techniques have been proposed to achieve region boundary identification [BALL-
1982] [JAIN-1989] [SONK-1993].

3.2.1.4 Region-based segmentation

The region-based segmentation techniques partition the image into regions according to some
relevant spatial homogeneity criteria. In particular, the regions detected are separated by edge and

in this sense, these techniques can be considered as a dual of the edge-based techniques.

Several techniques can be used to perform region-based segmentation. Most of these techniques

can be classified into one of the following categories:

/
(a) (b) (©

Figure 3.4 — Example of split and merge segmentation: (a) result of splitting step; (b) result after

the merging step; and (c) result after eliminating the small-size region to contrel the number of

regions.

e Region Split and merge — this category consists of both splitting and merging of regions,
based on their spatial homogeneity. It usually considers a pyramidal image representation,
where regions are square shaped and correspond to one of the pyramidal levels. The
segmentation starts with an initial division of the image into regions according to the

possible pyramid levels. Regions that are not homogeneous are usually split into four sub-
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regions according to a quadtree division. The result is a quadtree structure where each leaf
node represents a homogeneous region. Due to the quadiree representation usually
employed, it is desirable to introduce further processing steps to allow the merging of
adjacent homogeneous regions not belonging to the same branch of the segmentation tree.

Otherwise, some artificial block boundaries may result. An example of the application of
this technique is shown in Figure 3.4.

Region growing — the algorithms in this category are similar to region merging algorithm,
in the sense that neighbouring regions with similar properties are grouped together. The
main difference is that the region-growing algorithm does not start with a complete image
partition, as in the region merging case, but only with a set of seeds.

A popular technique for performing region growing is known as the watershed
transforms [MEYE-1990]. This technique is based on the detection of some image
minima, and the ‘catchment basins’ around them, followed by the execution of a
‘flooding’ procedure to divide the image into regions. Watershed segmentation is often
implemented using mathematical morphological tools. Due to its good segmentation
property, watershed algorithm, together with other feature extraction methods, has been
widely used image and video segmentation [CALLAGHAN-2005]. Detailed description

and examples of watershed segmentation can be found in [MEYE-1990] [VINC-1991]
[BEUC-1993].

Ofien, the region-based segmentation algorithms are preceded by a pre-processing step, where an
image simplification is performed using morphological filters. The goal of simplification is to
reduce the amount of information to process, while maintaining the relevant boundary information

in the image. It also helps to minimize the problem of over-segmentation that often results from
region-based techniques.

The main advantages of region-based segmentation are the effectiveness in identifying regions
that are homogeneous according to the selected spatial features and accuracy in boundary
location. The major drawbacks of these techniques are oversegmentation. One object patch is
segmented into several small patches due to the noise or texture. Therefore, image filtering or
region merging is required for these techniques.

3.2.2 Temporal segmentation

Temporal segmentation algorithms compute a segmentation partition by evaluating homogeneity

in the temporal dimension, To achieve such segmentation, the first step is usually to estimate a

40




Chapter 3. Video analysis and segmentation

motion vector field, from which a partition of the image into coherently moving regions can be

estimated.

For motion estimation, a number of different techniques can be used. Most of them are based on
the estimation of the apparent 2-D velocity field: the optical flow. However, the estimated optical

flow does not always correspond to the true motion field due to:

° The aperture problem; the motion can be estimated uniquely only if the aperture
contains at least two different gradient directions. As illustrated in Figure 3.5. to
estimate the motion at x; using aperture 1, it is impossible to determine whether the
motion is upward or perpendicular to the edge, because there is only one spatial
gradient direction in this aperture. One the other hand, the motion at x, can be
determined accurately, because the image has gradients in two different directions in

aperture 2.

True motion

Aperture 2

Aperture 1

Figure 3.5 — The aperture problem in motion estimation

® The corresponding problem; It is very hard to measure optical flow reliably at

featureless pixels because they could hardly correspond to pretty matching everything.
° Image noise and the occlusions between the moving objects;

The two main classes of temporal segmentation techniques are change detection and motion

segmentation, which are discussed in the following sub-sections.

3.2.2.1 Change detection segmentation

Change detection segmentation is the simplest video segmentation method using temporal
information. It can separate the regions that are changing position between successive time
instants from those that remain statistic, by comparing the previous with the current image — see

example in Figure 3.6.
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The elementary steps typically followed to achieve change detection segmentation are:

e Computing the difference between consecutive video frames — the frame difference
should be calculated after global motion compensation, to prevent camera motion from

influencing the results.

e Thresholding the image difference — in order to obtain a binary image, the image
difference must be thresholded. The threshold used can be predetermined. It can also be

dynamically computed based on the camera noise variance.

e Post-processing the result — change detection results can be improved by post-processing
the output of the thresholding step. For instance, if changes between consecutive images
are expected to be small, then parts of the moving objects may not be detected as having
changes, resulting in the appearance of undesired holes in the segmentation mask. In this
case, when a part of a previously moving object remains static for a small period of time,
it can still be considered as part of the detected object by using a segmentation memory
[MECH-1998]. Another post-processing is to distinguish between the changed areas that

correspond to the moving objects from those corresponding to uncovered static areas.

The uncovered static areas are assigned to the detected changed area to improve the

moving object segmentation [HOTT-1988] [MUSM-1989] [THOMA-1989].

(a) (b}
Figure 3.6 — Example of initial step of change detection segmentation. (a) and (b): Two video

frames; (c): The difference of the luminance part between (a) and (b).

Typically, change detection segmentation techniques use the segmentation result for a given time
instant as an initialization for the next time instant segmentation, thus performing a temporal

tracking of the detected objects. The limitations of change detection algorithms include:

° First, the motion of uniform objects is very difficult to detect. These areas would

become part of the unchanged area, creating holes in the foreground object.
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) Next, it cannot be used to segment the still images or objects.

® Furthermore, the global luminance change of background can cause incorrect change
detection. Adaptive background models are being investigated to reduce the effects of
global luminance change [STAUFFER-1999].

It is worth noting that the MPEG-4 standard includes in its Visual part an informative annex
describing a video segmentation algorithm whose temporal analysis is performed with the change
detection algorithms presented in [MECH-1998] — see Annex F in part 2 of MPEG-4 standard
[MPEG4-2001].

3.2.2.2 Motion-based segmentation

Motion segmentation goes further than simply detecting changing areas between consecutive
images, allowing the distinction between differently moving objects. For the example in Figure
3.7, change detection segmentation cannot separate the two video objects. Motion-based

segmentation relies on methods that estimate the 2-D velocity field and try to identify regions

with homogeneous motion characteristics.

(a) (b) (©)
Figure 3.7 — Example of motion-based segmentation partition (c) corresponding to the two frames
(a) and (b).

Several techniques have been proposed to perform motion segmentation. The possible

classification of these techniques is proposed below:

e Clustering techniques — these techniques try to find clusters of pixels whose estimated
motion vectors have similar properties. Clustering can be based on parametric motion
models [WANG-1994b], Hough transform [KRUS-1996], Expectation Maximization
framework (EM) [BRADY-1996], Maximization of a pesteriori probability (MAP)
[PARAS-2001]. and Gaussian mixture models (GMM) [CHAL-1995].
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e Hierarchical techniques — these techniques achieve motion segmentation through the
successive application of a dominant motion detection algorithm. In each iteration, the
largest moving object is identified and it is then removed from the image to be processed

in the next iteration, and then the cycle continues until a partition of the image is achieved

[WU-1993).

e Markov Random Field (MRF) techniques — these techniques formulate the motion
segmentation problem as the probabilistic estimation of a label field, which is modeled by
a Markov random field. The global energy function resulting from the MRF modeling can

then be minimized using Bayesian techniques [MURR-1987] [BOUT-1993] [ODOB-
1996], [GELGON-2000].

Motion-based segmentation techniques identify the presence of a set of moving objects by
analyzing the estimated motion field. However, motion estimation in uniform image areas is very
difficult due to the lack of texture information to match between consecutive images.
Additionally, since motion estimation is sometimes performed using approximate methods, such
as block-matching techniques, it is very hard to find the exact position of object contours.

Motion-based segmentation also leads to over-segmented partitions by separating several parts of
the same object that exhibit different motion characteristics. Additionally, different objects with
similar motion parameters may be merged with each other. To overcome these limitations, the
integration with other analysis tools, such as using spatial information or user assistance, should

be considered. Furthermore, motion-based segmentation techniques have high computational cost.

3.2.3 Combined spatio-temporal segmentation

For most applications, the usage of both spatial and temporal segmentation techniques can lead to
the most reliable results, overcoming the limitations of each of the individual approaches. This
combination can be achieved in several ways: temporal after spatial processing, spatial after
temporal processing, and simultaneous spatial and temporal processing.

For the temporal after spatial processing techniques, a spatial segmentation, as described in
section 3.2.1, is first performed, and afterwards extra segmentation information is added to the
spatial-based partition by considering the temporal information. The results of spatial
segmentation usually contain too many regions, and temporal segmentation information can be

used to group these regions that belong to the same moving object. Additionally, temporal
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information can be used to maintain the temporal coherence of objects when segmenting the video
sequence [CHOI-1997].

For the spatial afier temporal processing techniques, temporal segmentation is first performed. Its
result is then improved by a spatial segmentation step. The temporal partition improvements
include boundary location correction and inclusion of further regions that are not detected by the
temporal processing [MECH-1998] {KIM-1999] [WANG-1998].

Simultaneous spatial and temporal processing algorithms are the most powerful approaches.
Several algorithms perform video segmentation using this type of technique [SALE-1994]}
[CHAL-1996] [CHOI-1997] [MOSC-1998]. For example, video segmentation based on contour
tracking belongs to simultaneous spatial and temporal processing algorithms [YILMAZ-2004], in

which both temporal and spatial information is used to detect and refine the object contour of the
current frame.

One of the main advantages of segmentation based on spatio-temporal techniques is its efficiency
in identilying regions that are homogeneous in either, or both, spatial and temporal features. Good
tracking of objects throughout the sequence and accurate boundary location are also possible. The

main drawback is that combining different techniques may result in a high computational cost,
3.2.4 Summary of automatic video segmentation techniques

A summary of the main advantages and disadvantages of the various automatic segmentation
techniques is presented in Table 3.1. This table presents the characteristics of each of the main
classes of segmentation techniques, and the additional particularities of each of the specific

techniques considered. From Table 3.1, we can find that automatic segmentation techniques are
most snitable for usage with a given application.

3.2.5 Video segmentation with user interaction

Video segmentation with user interaction, or interactive video segmentation, is nowadays largely
recognized as ‘an important extra help’ to solve the segmentation problem, if the application
allows for it. A large number of references about interactive video segmentation techniques have
recently appeared in the literature. Some examples are [CHAL-1996] [SMEU-1997] [OCON-
1997] [GU-1998] [KWAK-1998] [MARC-1999a] [MARC-1999b] [MARQ-2000].

For video segmentation techniques, two major types of user interaction are considered useful:
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Initial user interaction — used to constrain the analysis process at its start. It can specify
the number of relevant objects to be identified by the analysis processing. It also allows
the user to select a set of pixels belonging to each of the objects of interest, so that they
can constitute the seeds used to constrain the automatic segmentation algorithm [CHAL-
1996]. Furthermore, initial user interaction can ask the user to define the position of the

contours for the interesting objects by drawing over the original image [GU-1998).

User refinement — used to refine and correct the automatic analysis results as they are
being produced. For example, it can correct a segmentation partition in terms of the

number of objects or by refining their boundaries. It can correct the image where a certain
object is said to appear for the first time.
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Table 3.1 — Summary of advantages and disadvantages for automatic segmentation techniques

Segmentation Advantages Disadvantages
techmique
SPATIAL-BASED Accurate boundaries ¢ Cannot ensure temporal coher.ency
e Often result in oversegmentation
« Unable to merge regions with similar
motion characteristics
Thresholding * Low computational cost Only use global image information
Effective for simple ignoring spatial relationships
scenes
Texture-based Effective for highly High computational cost due to the
{extures images texture feature extraction
Edge-based Effective in detecting e Sensitive to noise
spatial amplitude ¢ Requires complex edge link process
variations in images to get closed boundaries leading to a
partition
Region-based Effective in detecting Reasonable to high computational
regions with the selected cost
spatial features
More robust to noise
than edge-based
techniques
TEMPORAL Allov_vs tempo;al Unable to detect static objects or
BASED tracking of objects parts of objects
Low textured objects are hard to
detect
Boundaries may not be very
accurately located
Change detection Low computational cost Allows moving (and all static)
objects are merged together
Motion-based Effective in detecting Objects with similar motion may
regions homogeneous in appear merged together
motion Differently moving parts of an object
are identify as different objects
Reasonably high computational cost
SPATIO- Effective in detecting Reasonably  high to high
TEMPORAL regions homogeneous in computational cost
BASED temporal and/or spatial
characteristics
Good tracking of objects

e Precise boundary

location
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3.3 Proposal of contour tracking for video segmentation

This section discusses in detail the proposed video segmentation method, which is based on a
complexity-scalable contour tracking approach. This method can be classified into the combined
spatial-temporal segmentation category. In past decades, many methods have been proposed that
use temporal tracking [WANG-1998] to achieve video segmentation. After being detected and
segmented from one video frame, the video objects can be segmented by using a video-tracking
algorithm in the subsequent frame, with semantically meaningful object shape. The difference
between the proposed methods with other temporal tracking methods is that a complexity-scalable
contour-tracking algorithm is proposed and employed in segmentation method, which can achieve
more accurate object boundary detection. Furthermore, as the contour-tracking algorithm is
complexity-scalable, it can satisfy more application requirements. Before discussing the proposed
method, a brief review about video tracking techniques is given as follows.

Video tracking has become an important technique for image and video-based applications, such
as video segmentation (¢.g. [MPEG4-2001} [MEIER-1998] [WANG-1998]), video surveillance,
motion capture (e.g. [MOES-2001]), and gestural human-machine interfaces (e.g. [CROWLEY-
2000]). Many video tracking methods have been proposed, which can be roughly divided into
region-based tracking [MEIER-1998] [SCLAR-1998] [GOKCE-2000], contour-based tracking
[PARAG-2000] [GU-1998], and feature-based tracking [SHI-1994].

The tracking technique in [MEIER-1998] is based on a Hausdorff distance. A binary model for
the video objéct is first obtained from the edge image. The method then matches the model to the
objects in subsequent frames. The object model is updated at every frame to follow the change of
object shape. This method has the limitation that it cannot deal with complex scenes, and cluttered
backgrounds. In [SCLAR-~1998], active blobs employ a new region-based approach to nonrigid
motion tracking. Shape is defined in terms of a deformable triangular mesh that captures object
shape plus a colour texture map that captures object appearance. Nonrigid shape registration and
motion tracking are achieved by posing the problem as an energy-based, robust minimization

procedure. However, this method cannot cope with the object occlusion, complex motion and
deformation.

Instead of tracking pixels of the whole object, contour-based methods track only the contour of
the object. First, the object contour of the previous frame is projected onto the current frame using
motion information. Then, the predicted shape is adapted to the object in the current frame. The

tracking method in [GU-1998] first estimates the parameters of a perspective motion mode! and

48




Chapter 3. Video analysis and segmentation

then predicts the position of the contour in the next frame based on these parameters. To deal with
non-rigid body motion, the method adjusts the approximated boundary by means of a
morphological watershed. This method can track an object contour with pixel-wise accuracy. But
it cannot handle large non-rigid movements. Active contours (snakes) are efficient methods for
tracking both rigid and nonrigid objects [PARAG-2000]. One of the important features of the

active contour technique is that it can fuse both edge and texture information to improve the
tracking accuracy.

Recently, particle filters have become popular tools in solving the tracking problem [ISARD-
1998] [PEREZ-2004], which, for the visual tracking context, are pioneered by Isard and Black
[ISARD-1998]. One important advantage of particle filtering is that it allows the information from
different measurement sources to be fused in a principle manner. However, within the visual

tracking context, efficiently fusing different cues has not been fully exploited to increase the
reliability of object tracking algorithms,

During our research, a complexity-scalable object contour tracking method is proposed, which is
based on multiple cues (including motion, texture, edge, etc). It can achieve robust object tracking
under different conditions. In particular, it can achieve complexity-scalable contour tracking so it
can adapt to different applications and complexity requirements. No prior training is required, and

a non-parameterized contour model is used. The block diagram for contour tracking algorithm is
illusirated in Figure 3.8.

This method can be considered as a hybrid scheme of feature-based, region-based and contour-
based techniques. The proposed scalable contour-tracking algorithm consists of three steps, each
of which can be exploited for different applications. At first, an object contour is predicted using
feature-based and mesh-based object tracking schemes, Then, it is refined using texture
information along the contour region, in which a local maximal likelihood detection scheme is
conducted. Finally, the active contour model is applied to track object contour with pixel-wise
accuracy and alleviates the possible error detection in step 2.

The proposed method features the following novelties:

1. A robust piccewise contour prediction scheme is employed, in which reliability
evaluation is first conducted for the estimated motion vectors of mesh vertices and a local

motion medel is estimated and used to predict the object contour.
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2. A local maximal likelihood detection scheme is used to correct the predicted contour,

which is efficient for nonrigid object movement.

3. Both local photometric (foreground/background region statistical properties) and
geometric (such as edge, contour and region smoothness constraints) information is

incorporated into the active contour model to further refine the contour,

i START i

—»{  Ioputvideo frame |

The first frame of
“. video shat?

+
Step 1: Contour prediction
from previous frams

J .
Step 2: Contour refinement
based on luminance

Semantic image

segmertation statistical distribution
)
Step 3: Further refinement
; ’ -} based on active snake model §-
+ +
N

“The last frame of
video shat?.- ;

' T . END |

Figure 3.8 — Block diagram for contour tracking algorithm within one video shot

3.3.1 Semantic image segmentation

Before carrying out contour tracking to achieve segmentation, we should semantically segment
and specify the object to be tracked. Using automatic segmentation techniques, as discussed in
Section 3.2, or using user interaction can achieve this. Some advanced interactive image cut

algorithms, for example the method in [ROTHER-2004], can also be used to minimize the human
interaction and achieve semantic object segmentation.

In order to achieve semantic image segmentation of the first frame, combined spatial-temporal

segmentation technique is employed. The proposed algorithm consists of spatial segmentation,
and segmentation refinement,
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3.3.1.1 Spatial segmentation

First, morphological open/closing by reconstruction filters are used to simplify the first video
frame. As we know, morphological open/closing by reconstruction filters have good performance
for keeping the edge of the structure while removing small texture pieces whose size is smaller
than that of the structure element of morphological filters. In our experiments, the size of structure

element # is decided by the testing sequence such as the size of frame and complexity of texture.

After getting the simplified image, its gradient is estimated by the Sobel edge detector. The
gradients of two chrominance components are also estimated and used to improve the
performance, which is based on the following formula:

Grad = max{aGy, 8Gy,1Gy } (3.2)

where @, f,and y are the weighting factors applied.

The watershed transformation algorithm [VINC-1991] is used on the gradient image to get the
segmentation. Before watershed transformation, the gradient image is thresholded by a value.
That is, small gradient values, which are less than the threshold value, are set to zero, otherwise
they remain the same. The threshold value varies from sequence to sequence, which is chosen
from 8 to 15 in our experiments. After the watershed transformation, the region-merging

algorithm is used to merge the small-sized patches based on intensity homogeneity.

3.3.1.2 Segmentation refinement

In the proposed scheme, motion, colour, and user input are integrated to merge the adjacent
‘similar’ patches. Block-matching or change detection algorithm is used to derive the motion
information. Change detection is more useful for static background/ moving foreground and
moving background/static foreground sequences, such as Akiyo sequence. However, block-

matching algorithm is more useful for moving background/moving foreground sequences, such as
Carphone sequence.

After getting the spatial segmentation results and temporal information, they are fused to get the
foreground and background objects. The same fusion algorithm in MPEG-4 is used in our
proposed algorithm to get the final segmentation results — see Annex F of part 2 in MPEG-4
standard [MPEG4-2001]. For example, if the change detection algorithm is used during the
motion estimation and when most of the spatially segmented region belongs to the changing

region in the change detection mask, the whole area of the spatially segmented region is declared
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as a foreground, otherwise it belongs to background. The parts exceeding region boundaries in the
spatially segmented region can be excluded from the foreground region when the portion of the
exceeding pixels compared to the neighbouring regions is small. While uncovered parts of the
spatially segmented region by the object mask can be all foreground when their portion of areas
are small compared to the part of the region covered by the foreground part of the object mask.
Sometimes, both foreground and background have similar motion pattern. In this case, user

interaction is required in order to achieve semantic segmentation.

Figure 3.9 shows the segmentation results for the Carphone sequence using the proposed method.
During the image simplification process, the size of structure element M, of morphological
filters increases from 3x3 to 7x7. The applied weighting factors @, £, and ¥ are chosen as 1,
0.5, 0.5 respectively during the gradient fusion. These selected parameters can achieve good
segmentation performance for all video sequences by fusing the luminance and the chrominance

components. The gradient value is thresholded by 10 before watershed transformation.

(a)

© (d)

Figure 3.9 — Semantic segmentation of Carphone sequence. (2) Original frame 0. (b) Its spatial
segmentation results. (¢) Maotion vectors estimated by hierarchical block matching algorithm. and

(d) Final segmentation results.




Chapter 3. Video analysis and segmentation

Figure 3.10 shows the segmentation results of Akiyo sequence. For this sequence, as the
foreground object is static and background objects are moving, the change detection algorithm is

used to extract the motion information.

(©) (d
Figure 3.10 — Semantic segmentation of Akiyo sequence. (a). Original frame 0; (b). Spatial

segmentation results; (c) Motion information estimated by Change Detection algorithm and (d)

Final segmentation results

Figure 3.11 shows the process for estimating the motion information of the Akiyo sequence in
frame 0. (a) and (b) are two video frames; (¢) is the difference between these two frames; (d) is
the change decision based on statistical significant test; (¢) is the foreground mask after Bayesian
estimation and relaxation; (f) is the final foreground mask after post-processing, trying to remove

the small-size patches.

3.3.2 Complexity-scalable contour tracking for video segmentation

After getting the object with semantic meaning, object contour is used as the descriptor of video
object. Then, the subsequent video frames are segmented through contour tracking. In our search,
a complexity-scalable contour tracking scheme is proposed, which includes contour prediction
using motion, contour refinement using colour information and further refinement through active

snake model. The detail descriptions are presented in the following subsections.

h
[¥5)




Chapter 3. Video analysis and segmentation

(d) ©) (0

Figure 3.11 — Motion information extraction of Akiyo sequence by using change detection

algorithm.
3.3.2.1 Contour prediction

For the object in the previous frame, robust feature points, based on the criteria of [SHI-1994], are
selected on the object and the object contour is approximated through a series of contour points. A

mesh model is then constructed using the allocated feature points.

After object mesh construction, both forward and backward motion vectors of control points

between frame /(%,2-1) and frame I(%,7) are estimated using the Shi-Tomasi feature-tracking

algorithm [SHI-1994]. That is, the forward motion vector of the i th node location V, in frame

!

t—1, moves to location V; in frame ¢. Then the backward motion vector at the location ¥, in

frame + maps back to ¥, in frame 7—1.

After both forward and backward motion estimation, their motion “reliability” is estimated based
on both forward and background motion vectors. The “reliability” is evaluated by the following

formula:
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A
-7
e (3.3)

Re =exp
X

where o, is the free parameter.

From Equation (3.3), it shows that the smaller the difference between V; and V,-', the more

reliable the motion vector of 7 th node. For the nodes whose reliability is smaller than a threshold

(0.3 is chosen in our experiments), they are not considered during contour prediction.

Then, a mesh-based motion estimation scheme [GOKCE-2000] is applied to refine the motion
vectors of the control points. The positions of the nodes with higher “reliability” are initialised by
the feature-based motion estimation results. The initial positions of the nodes with smaller

“reliability” are estimated from their neighbours. The mesh-based motion estimation scheme can
keep the mesh structure during MV’s refinement,

After estimating the motion vectors of interior points, the points along the contour can be
predicted from their m nearest motion vectors. The weighted least squares estimation algorithm
(WLS) is used to determine the affine motion that best describes the motion of the contour

segment. Each motion vector is weighed according to its “reliability”.

For a rigid moving object, the object contour is predicted with high accuracy. However, for

nonrigid moving object, for example, human head profile contour appearance, further refinement
is necessary.

3.3.2.2 Contour refinement

In this step, it is assumed that the statistical characteristic of pixels of frame ¢ is similar to its

adjacent neighbors in frame 7—1. This step is efficient in tracking objects with large nonrigid
motion such as the in-plane rotation of human head.

During contour refinement, local maximal likelihood detection is used to refine the predicted
contour in frame ¢. Only the pixels in the band around the object contour are employed to
estimate the statistical properties of foreground and background, in which non-parametric kernel
density estimation is employed [FORSYTH-2003]. While estimating the local statistical

properties of contour points in the previous frame, the selected pixels are constrained by rectangle
and the defined band, as shown in Figure 3.12 (a) for point P.
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The estimated local statistical properties of foreground and background around point P are used
to refine the corresponding contour segments around the predicted contour point P’ in frame ¢,
using maximal likelihood (ML) detection and Bayesian relaxation. First, a band is generated
around the predicted contour in current frame #. It means that the object contour can only be
searched in the band. Then, based on the local statistical probability of both foreground and
background of P, the pixels around P’, which should also be located in the circle as shown in
Figure 3.12 (b), are classified as foreground and background. The radius of circle is decided by

the distance between P'and its neighbour contour points.

As the criterion of this step is that the statistical characteristic of the pixels of frame ¢ is similar to
its adjacent neighbours in frame ¢—1, it is efficient for tracking the object with large nonrigid
motion such as human head in-plane rotation. However, as the contour smoothness constraint is
not employed during refinement, some contour parts are zigzag-patterned and visually
uncomfortable, especially for the position where statistical probabilities of foreground and

background are similar. Therefore, further refinement is necessary to get smooth object contour.

\Estimated
AV contour points
Final object contour

- Object contour

(a) (b)
Figure 3.12 - Illustration for contour refinement process; (a) estimating local statistics of
foreground and background around P in previous frame; (b) refining contour segment around the

estimated P’ in current frame.
3.3.2.3 Further refinement using active snake
After contour prediction and refinement, a precise object contour can be achieved if there is high
contrast between the tracked object and background along the contour. If the contrast is low, the

generated contour is a zigzag and some contour shape errors may occur.

In the third step, the active contour model is used to refine the contour further. Suppose that »
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discrete points are selected, which have similar foreground and background surroundings, along

the given contour €. The discrete snake energy £, ,. can be expressed as follows:
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where each E; depends on the contour segment between up to three points v, ,, v, and v,,,. In our
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research, the dynamic programming algorithm in [AMINI-1990] has been used to search for the

maximum of Equation (3.4).

During algorithm implementation, for node 7, the search locations are restricted along the bisector
lines of the angle Av, VisViVia + v,v,., . As the points are placed at regular intervals along the contour, the

intermal energy in node ; is selected as:

By =2~ 2c0824V,v, v,V (3.5)
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An edge map is selected as one part of external energy E,, of Equation (3.4). The Canny edge

detector has been used to obtain the edge map. Low threshold has been used during edge detection
to detect the weak edge. Short edges are removed in order to reduce the effect of noise. A binary

edge map BinaryEdgeMap is generated, which is then smoothed by Gaussian filter with variance
o, (o, =2 is selected in the experiments). The average gradient along the contour segment is
used as external energy E,gq, .

BinaryEdgMap,, (v,-v,-_, )+ BinaryEdgeMap ,, vvia)

B i ;
o g l(vivi—l)+ l (Vivm) e

‘ Vi : :
background background

(a) (b) (c)

Vist
background

Figure 3.13 — Region energy calculation for different situations

In the proposed algorithm, regions force is employed, in which mutual information between

image intensity and its label is maximized [KIM-2002].
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E gy =112} L(x))

= H() - Pr(2(e) = ) (()2() = F) - Pr(L(s) = B (TR (s) = B) B

where B and F represent the background and foreground respectively within the support S, as
shown in Figure 3.13. E,,g,; Will be maximized if and only if the labelling L() gives the
correct segmentation [KIM-2002], as in Figure 3.13 (c).

H (I (le(x) =F ) =- L Pr, (x)log Pr, (x)dz (3.8)

Pr(xIL(x)= F) and Pr(xiL(x)= B) are the density of foreground and background which are
estimated using the fast gauss transform algorithm in [CHAN-2001].

After achieving the object contour of frame ¢, object mesh structure and contour approximation

are updated in order to track object contour along the whole video sequence.
3.4 Experimental results and analysis

Several sequences have been used to test the performance of our proposed methods. For

Motr_dhtr and Claire Sequences, the experimental results are shown in Figure 3.14 and Figure
3.15, respectively.

For the Motr_dhtr sequence, 700 frames are segmented without human interaction except for the
first frame. Figure 3.14 (a) shows the predicted contours of four frames using motion information.
For most sequences, the performance is acceptable. Large prediction errors may occur if in-plane
rotation happens, such as the botiom-left image in Figure 3.14 (a). Figure 3.14 (b) illustrates the
refined object contours. The object contour can be detected correctly.

Figure 3.15 shows the segmentation results of Claire. The proposed algorithm can segment 500
frames without human interaction after the first frame. The experimental results show that this

contour tracker is robust for tracking nonrigid motion, even with partial occlusion, as shown in
Figure 3.14, and Figure 3.15.
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(b)
Figure 3.14 — Video segmentation results (four frames) for Motr_dhtr sequence. (a) Results after
contour prediction; and (b) Results after further refinement using active snake
One reason for the success of this algorithm is the use of band constraint during the refinement
process. There are several advantages of using the band around the contour compared to using the
complete region during probability estimation and pixel classification:

e First, it allows object tracking by adapting to the local changes around the object contour;

e Next, the contour search space is reduced, which can save the computational time:
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e Furthermore, the effects of noise and artefact from both foreground and background are
reduced.

Most importantly, the proposed contour tracking algorithm can achieve complexity-scalable
object tracking. Based on the requirements of the tracking accuracy, not all of the steps of the

proposed scheme need to be implemented. This can release much computation burden.

In our proposed algorithm, contour prediction and contour refinement steps achieve the effective
prior result of current frame. It is a prediction taken from the posterior result of the previous
frame. Further refinement step using active contour can be considered as the measure process, in

which the observation information of current frame is used to refine the contour.

Figure 3.15 - Video segmentation results (four frames) for Claire sequence after further

refinement using active snake

3.5 Conclusions

In this Chapter, the importance of video segmentation for object-based or model-based video
coding has been explained. Moreover, the main objectives of video segmentation have been
presented. For video segmentation, the main conclusion was that there are many techniques
available, but individual techniques often consider specific constraints, and thus provide useful
results only for the targeted applications, showing intrinsic limitations for dealing with generic
audiovisual sequences content. For instance, a spatial segmentation technique does not take the

temporal information into account, and a temporal segmentation algorithm is not able to identify
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static object. Since video segmentation is recognised as a complex problem, the solution often
consists of the combination of several analysis techniques in order to exploit their advantages and
overcome their shortcomings. Whenever possible, user interaction should be allowed to guide the

process, and correct or improve the automatic segmentation results.

After reviewing the main segmentation algorithms, a contour-tracking algerithm has been
proposed and employed for video segmentation, which can achieve complexity-scalable object
tracking with different tracking accuracies. In this algorithm, a combined spatial and temporal
segmentation technique has been used to detect and segment the video object to be tracked. Its
contour is used fo as the initialisation of the contour-tracking algorithm. Sometimes, user

interaction is required to achieve semantic video object segmentation for complex video
sequences.

After initialising the object contour, a three-step contour-tracking algorithm is proposed to detect
the object contour of the subsequent frames. The tracking results of each step can be used for
some special applications with different accuracy requirements. The proposed video segmentation

algorithm can be considered as a hybrid feature-based, texture-based and confour-based tracking
algorithm.

The experimental results show that this contour tracker is robust for tracking the object contour
with nonrigid and large motion, even with partial occlusion. Further research is being conducted
within the EC FP6 funded VISNET project (httny//www.visnet-noe.org) to improve the
performance of contour tracking algorithm and to achieve the multiple object contour tracking
with a view to comparing the proposed method with the particle filtering method.
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Chapter 4

Face Detection and Its Scalable Modelling

4,1 Introduction

Due to the application of the pre-defined 3D wireframe model in both encoder and decoder, 3D
model-based video coding can achieve very low-bit rate coding. Only the analysis parameters
need to be transmitted to the decoder. In 3D model-based coding, the encoder tries to recognise
the objects (such as faces) in a video scene. As soon as the coder recognises an object, it uses
human knowledge about this object to improve the coding performance. For head and shoulder
sequences, the algorithms for facial feature recognition and face model adaptation are proposed in
[KAMP-1997b]. These algorithms include:

e  Detection of face features, such as eyes and mouth, including their comers and
contours;

o Adaptation of the predefined face model to the detected human face by scaling the face

mode! horizontally to match the distance between the eyes and vertically to match the
distance between the mouth and eyes;

Experimental results show that the efficiency of 3D model-based video coding exploiting the
priori knowledge of objects is higher than that of object-based video coding without priori
knowledge of objects [KAMP-1997b]. For the proposed scalable 2D model-based video coding
scheme, a priori knowledge on detected objects can also be employed during the coding of head-

shoulder sequences, although the proposed scheme is rather universal and not limited to coding
head-shoulder sequences,

This chapter addresses the algorithms for face detection, scalable face model design and its
performance evaluation. After reviewing the main face detection techniques, a robust and

adaptive face detection method is proposed, which is based on piecewise skin colour distributions.
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Next, reliable algorithms are proposed for detecting eyes, mouth and chin that are used to verify
the face candidatures. Then, based on the detected facial features and facial muscular
distributions, a heuristic scalable face model is designed to represent the rigid and nonrigid
motion of head and facial features. An efficient motion estimation method is proposed to evaluate

the efficiency of the designed model. The proposed method features three major novelties:

A robust and simple face detection scheme is proposed. Illumination-piccewise
statistical skin colour model and Bayesian detection/relaxation schemes can achieve

robust detection to different lighting conditions and skin colour.

A reliable and simple facial feature detection scheme is proposed, which is very
important for its application to scalable 2-D model-based video coding.

® Facial muscular distribution is introduced to build the scalable face model, which can

- describe face motion more precisely, hence reducing the warping etror during scalable
model-based video coding.

4.2 Face detection techniques: A review

In recent years, facial feature detection has received considerable attention due to its wide range
of applications, such as face recognition, human computer interface, and model-based video
coding. Many approaches have been proposed [ROWLEY-1998] [SUNG-1998] [MAIO-2000]
[SOBOTTKA-1996] [HSU-2001] [KUQ-2002] [WONG-2003]. These approaches apply different
techniques, such as neural networks (NN), support vector machine (SVM), geometrical
modelling, motion extraction, and colour analysis. Ming-Hsuan Yang gives a more detailed
review on face detection algorithms [YANG-2002]. Existing face detection techniques can be

~ classified into four categories, as listed in Table 4.1. These categories are:

1. Rule-based methods.

These methods are designed mainly for face localization [YANG-1994] [KOTROP-
1997]. They encode human knowledge of what constitutes a typical face. Several rules are
proposed and employed during face detection. Face features in an input image are
extracted first, and face candidatures are identified based on the coded rules. A
verification process is usually applied to reduce false detections. One problem with these
methods is the difficulty in translating human knowledge into well-defined rules. If the
rules are too detailed or strict, they will fail to detect faces that do not pass all the rules.
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Moreover, it is difficult to extend these approaches to detect faces in different poses since

it is challenging fo enumerate all possible cases.

. Feature invariant approaches.

The underlying assumption of these methods is based on the observation that humans can
effortiessly detect face and objects in different poses and lighting conditions and, so, there
must have features which are invariant over these variabilities, These algorithms aim to
find structural features that exist even when the pose, viewpoint, or lighting conditions
vary, and then use these to locate faces. These methods are designed mainly for face
localization [GRAF-1995] [LEUNG-1995] [YOW-1997] [DAI-1996] [MCKEN-1998].
One problem with these methods is that the image features can be severely corrupted due

to illumination change, noise, and occlusion. So they are not robust enough.

. Template matching methods.

In template matching, a standard face pattern is manually predefined or parameterised by
a function, Given an input image, the correlations between an input image and the stored
patterns are computed for detection. The existence of a face is determined based on the
correlation value. These methods have been used for both face localization and detection
[CRAW-1992] [LANITIS-1995] [DENG-1997]. The advantage of these methods is
simple implementation. However, it has proved to be inadequate for face detection since

it cannot effectively deal with variation in scale, pose, and shape.

Appearénce»based methods.

In contrast to template matching, the models in appearance-based methods are learned
from a set of fraining images that should capture the representative variability of facial
appearance. In general, appearance-based methods rely on techniques from statistical
analysis and machine learning to find the relevant characteristics of face and non-face
images. These methods are designed mainly for face detection [TURK-1991] [SUNG-
1998] [ROWLEY-1998] [OSUNA-1997]. [RAJAGO-1998] [COLMEN-1997]. The

disadvantage of these methods is the computational complexity for learning the face and
non-face models.
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However, some techniques can be classified into more than one category [GOVIND-1996]

[WONG-2003]. For example, template-matching methods usually use a face model and sub-

templates to extract facial features, and then use these features to locate or detect faces.

Table 4.1 — Summarisation of the algorithms for face detection within four categories

Approaches

Representative algorithms

Rule-based approaches

Multiresolution rule-based method [KOTROP-1997].

Feature-invariant methods

I

Facial feature
Texture

Skian colour

Mutltiple features

Grouping of edges [YOW-1997].

Space Gray-level dependence matrix of face pattern
[DAI-1996].

Mixture of Gaussian [HSU-2001] [MCKEN-1998]
[CHAI-1999].

Integration of skin colour, size and shape [KJELD-
1996] [SOBOTTKA-1998] [WONG-2003].

Template matching algorithms

~  Pre-defined face model

— Deformable templates

Shape template [CRAW-1992].
Active shape model [LANITIS-1995].

Appearance-based schemes

— Eigenface

— Neural network and Naive Bayes
Classifier

— Support Vector Machine (SVM)
— Hidden Markov Model (HMM)
~ Information-theory approach

Eigenvector decomposition and clustering [TURK-
1991].

Gaussian  distribution and multilayer perception
[SUNG-1998] fROWLEY-1998].

SVM with polynomial kernel [OSUNA-1997].

Higher order statistics with HMM [RAJAGO-1998].
Kullback relative information [COLMEN-1997].

4.3 Proposal for automatic face detection

In this section, an automatic face detection technique is investigated. Although many face

detection techniques have been developed in the past, one of the disadvantages of these methods,
such as [SUNG-1998], [SOBOTTKA-1996] [SOBOTTKA-1998] [HSU-2001] [CHAI-1999]
[KUO-2002], is heavy computational complexity (some of them include training), which makes
them unsuitable for the proposed scalable 2D model-based video coding. Another disadvantage is
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that they are not robust enough to cluttered backgrounds and different lighting conditions. In our
rescarch, an automatic face detection technique has been proposed, which includes the algorithms

for face detection, eye-mouth extraction and chin detection, These proposed algorithms are
discussed in the following subsections.

43.1 Face detection and eye-mouth extraction

The proposed face detection algorithm consists of face localisation, eyes defection and mouth
extraction. During the detection process, it is assumed that the faces in video sequences are in
frontal or near-frontal views. This assumption is reasonable to the application of scalable 2D

model-based coding, It can also make facial feature detection and scalable face modelling easier.
4.3.1.1 Face localisation

A robust and adaptive face segmentation method is proposed to locate and regularise face

candidatures. The method is based on luminance-piecewise skin colour distributions. It consists of
three steps:

1. Detect face candidatures based on a luminance-piecewise statistical skin colour model
and Bayesian decision/relaxation;

2. Regularise the face candidatures using spatial segmentation results;
3. Evaluate face candidatures using both shape and size.

There are many methods to locate face candidatures based on skin colour model [CHAI-1999]
[HSU-2001]. However, it is found that none of these methods can detect the face robustly under
poor and strong lighting conditions. The detected face is full of holes, or in a zigzag shape. In fact,

the skin colour model, that is, the distributions of chrominance components C,. and C,, is related

to the illumination value Y . In our research, non-parametric kernel density estimation is used to
build the piecewise statistical skin colour distributions. 43 million skin pixels from 900 images in
[PHUNG-2002] are used to train the skin models as shown in Figure 4.1, In order to increase its
robustness to different lighting conditions, the skin models are separated into 6 parts based on
luminance value Y, as shown in Figure 4.1 from (a) to (f). It is shown that Figure 4.1 (a) and (f)
have totally different statistical properties from other models in (b) — (¢). These two cases are very
important for the face detection for dark skin colour and under different lighting conditions.
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Figure 4.1 — Statistical distributions of human skin colour with different luminance values

In our research, the pixels are classified based on Bayesian decision and relaxation in order to
minimize the fault decision. Let x be the feature vector of a pixel. Let p(x|®,) and p(x|®,) be
the class conditional probability densities of skin colour class and non-skin colour class
respectively, where @, and @, represent skin colour class and non-skin colour class respectively.
The decision commonly involves the following process:

If L(x):ﬁ(L“’*) >TH, then x€,

plx|w,) 4.1)
else xe w,
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By applying the Bayesian formula and minimizing the misclassification cost, the following
relation exits:

I Lix)= plx|@y)  Coy P(wz),
v (x) P(xl wz) & Ci2 PTfol)
then xe€ w, (4.2)

else xc w,

where loss parameter C; ; means the loss incurred when a pixel of type i is classified as having

type j. Since loss associated with corréct classification should not affect the design of the
classifier, C;; =C;; =0. During the experiments, we select C,, =2*C,, so as to detect all of

the possible face skin pixels. Furthermore, it is very hard to get the non-skin class conditional
probability density of all kinds of backgrounds pixels, and prior probabilities p(wl) and p(toz).
Hence, it is assumed that the non-skin class conditional probability density conforms to uniform
distribution, and the probabilities p(w,) and p{w,) are equal. Therefore, the threshold TH in
Equation (4.1) is calculated to be 0.5.

The above decision process does not take the relationship among adjacent pixels into
consideration, that is, the neighbours of a skin colour pixel are more likely to be skin colour
pixels. Therefore, after Bayesian classification, the Bayesian relaxation algorithm proposed in
[AACH-1993a] [AACH-1993b] is exploited. The decision is based on the following formula:

¥ ‘,","8‘3—% > (T +8*(B+ C)— 4+ (v, (5)* B+ vol5)*C)) then x< e

else xew,

where v, (s) is the number of skin pixels which border pixel x horizontally or vertically, and
ve(s) is the number of skin pixels that are diagonal neighbours of pixel x. The cost parameters

B and C in relaxation algorithm are so-called potentials, which, when positive, incur an energy
increase for each border pixel pair present in a change mask [AACH-1993b]. In our experiments,

B and C are chosen to 0.25 and 0.125 respectively, which can achieve stable and reliable results.

After Bayesian decision and relaxation, spatial segmentation is used to regularise the face
candidatures. Watershed transform is used to achieve spatial segmentation. Face candidatures are
then superimposed on top of the spatial segmentation mask to regularise the shape of the face
candidature. In our experiments, if 80% of the spatially segmented patch belongs to a face
candidature, the whole segmented patch is considered as part of the face candidature. If 20% of
the spatially segmented patch belongs to a face candidature, the whole segmented patch is not part

of the face candidature. However, if the ratio lies between 20% and 80%, no change occurs.
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For every candidate, the size and shape are evaluated, assuming that human faces in the video are
not too small and their shape is characterized by elliptical or oval shape [SOBOTTKA-1998].

Some face candidatures that do not meet the above conditions are considered as non-face patches.

Figure 4.2 demonstrates the results of face localization algorithms by using (a) the skin colour
model in [CHAI-1999] and (b) the proposed skin colour model. The images have the same bright
lighting conditions. The left hand images in (a) and (b) are the original images containing the face
candidature. The right hand images are the detected face candidatures. The resuits show that our

proposed skin colour model can locate the face more precisely.

(a)

(b)
Figure 4.2 — Face localization using different skin colour models. (a): Original image and the
detected face candidature using literature method in [CHAI-1999]: (b): Original image and the
detected face candidature using our proposed method. The left images of (a) and (b) are the

original images and the right ones are the localised face candidature.

Figure 4.3 shows the face location results for several sequences under different lighting
conditions. Parts (a) and (b) are the sequences captured in the Labs with controlled lighting
conditions. We can find that the proposed skin colour model can locate faces correctly under both
bright and dark lighting conditions, which can not be achieved by using the skin colour model in
[CHAI-1999]. Several standard video sequences are also used to test the performance of cur
proposed scheme, such as Miss_am, Claire, Akiyo, Carphone, etc. The detection results of Akiyo
and Carphone sequences are shown in parts (¢) and (d) of Figure 4.3. More face localisation

results are presented in section 4.5.
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(d)
Figure 4.3 — Results of face localization algorithm. The images in left column are the original

images; and the images in right column are the localized face candidatures
4.3.1.2 Locating eyes and mouth
After locating face candidatures, the eyes and mouth should be detected to verify the face

candidatures. As it is assumed that the detected face is frontal or near-frontal view, it is not

difficult to detect the eyes and mouth.
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In our research, colour and luminance are used to locate eye and mouth position, which is based

on the observation that high C, and low C, values are found around the eyes, and eyes contain

both dark and bright pixels in the luminance part. The mouth region contains red lips and some
pixels with small luminance value are located between the upper and lower lips. The search

procedures for eye and mouth candidatures are illustrated in Figure 4.4. They can be described as
follows:

Enhance C, and C, by using histogram equalisation; Calculate colour map

MapC=C, + (255 -C, ) , and then enhance it using histogram equalization;

Emphasize the dark pixels in the ¥ component using the morphological dilation
operation, and calculate the map: MapY =(diIation(Y)/(errosion(Y )+0.0001)). Then,

enhance it by using histogram equalisation;

Calculate eye/mouth decision map: EyeMouthMap = MapY + MapC, and normalize it

to brighten both eyes and mouth, and to suppress other noises;

The eye and mouth candidatures are initially estimated by iterative thresholding of
EyeMouthMap . The iterative thresholding method in [PEREZA-1987] is used.

The search region is restricted to the located face candidatures, Figure 4.5 shows the results of the
above search procedures for the Carphone sequence, and the final location of the eyes and mouth.
In Figure 4.5, (a) is the luminance component; (b) and (c) are the enhanced C, and C,. (d) and
(€) show the calculated maps MapY and MapC. (f) is the calculated EyeMouthMap and is used

to locate the position of eye-mouth candidatures in (g). Experimental tests show that the proposed
method has two advantages when compared with that in [HSU-2001]:

First, it requires less computation for eye-mouth localisation, which can save about 30%
computational complexity for different face sizes.

Next, it is more robust for faces with different kinds of lighting conditions because

some lip colour is faint or is similar to its surrounding skin.
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Input face candidature

r

Enhance C, and C, components

4
Calculate colour map: MapC=C, +(255-C, )

4

Calculate the luminance map:

MapY =(dilation(Y)/(errosion(Y) + 0.0001))

T

Calculate eye/mouth decision map:

EyeMouthMap = MapY + MapC ,

Iterative thresholding of EyeMouthMap , and

eye/mouth candidature decision.

Figure 4.4 — Flowchart of search algorithm for eye and mouth candidatures

(2) (b) (c) C)

(H (8)

Figure 4.5 — [llustration of face feature detection for Carphone sequence
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4.3.1.3 Verifying eyes and mouth pairs

For the detected eyes and mouth candidatures in Figure 4.5, there are 6 eye or mouth candidatures
and C; =20 kinds of eye-mouth combinations, theoretically. However, the geometry and
orientation information can be used to reduce this number, In our research, the symmetry of eyes
and mouth localization are proposed to verify the eyes and mouth pairs. Figure 4.6 illustrates the
geometry and orientation relations among face, eyes and mouth. The following criteria are used

during verification, which are satisfied for frontal or near-frontal view of faces:

,Face direction

&\ ¥~ Eye-mouth wiangle divection
2

Figure 4.6 - Face and facial feature geometry and orientation

1. The face is upright and eye pair should be located in the upper half face (above the
minor axis of the fitted ellipse. This can reduce the number of eye-mouth pair from 20

to 9 for the face candidature in Figure 4.5.

2.  For every face candidature, the direction &, of the major axis of the fitted ellipse
should be almost the same as the direction of the vector from the midpoint of the two
eyes to the mouth &, . If the difference between 6, and &, is less than a threshold (10

degree is used in our experiments), it is a face. Otherwise, it is not a face.

3. The vector, which is perpendicular to the interocular segment ( E, E, in Figure 4.6) and

passing the midpoint of two eyes, should pass the mouth candidatures.

4.  The line passing two mouth corners should be almost parallel to the line passing two
eyes. This means that the &, and &, in Figure 4.6 should be the same (5 degree

difference is tolerated).
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Experimental results show that the eye-mouth pair can be detected and verified correctly based on

the above four criteria. 50 face images are tested and the detection correction rate of eye-mouth

pairs is 100%. Experimental results show that the computational complexity of the proposed
method is about 30% - 50% of that of the method in [HSU-2001].

4.3.1.4 Detecting the corners of eyes and mouth

After locating the position of the eyes and mouth, their four corners are detected to build the

scalable face model. For eye comer detection, two methods have been proposed for different face

sizes.

° If face size is small (smaller than 32 x 64), the method is based on the Morphological

Open by Reconstruction Filter (MORF) and thresholding.

. Otherwise, a deformable template matching algorithm is used to detect the eye comers

with high accuracy, but also with high computational complexity.

For detecting eyes with a small size face, the procedure consists of’

o MOREF is used for the eye patch, followed by thresholding in order to obtain a binary

map.

° For every column of this patch (from left to right), the first and last columns with zero

elements are chosen as the column on which the eye corners are located. The centre of

the eye can be estimated based on the eye comers. This scan step is illustrated in Figure

4.7.

From
Top
To

Bottom |

>

From laft to nght

From right to left

Tao

+ Bottom

Figure 4.7 — Scan procedure for eye comer detection
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° The upper and lower eyelids (two points) can be estimated, as the line joining these two

points is perpendicular to the line joining the two eye corners.

For detecting eyes of larger size, it is not easy to estimate the eye corners precisely by using the
above method. Deformable template matching algorithm is used. The edge and valley energies are
used to adjust the template, and are defined as those in [YULLE-1992]. Interested readers are
referred to [YULLE-1992] for the detailed descriptions.

For mouth comer detection, deformable template matching algorithm is used to detect the four

mouth corners. However, several modifications are made to improve its speed:

° The SUSAN comer detector [SMITH-1997] is used to detect the right and left mouth
comer candidatures. This can reduce the search region for deformable template

matching.

° Lip colour distribution is used to further reduce the search position of the deformable
template. Colour distribution inside the mouth is modelled as a Gaussian mixture with
three components: a dark aperture, pink lips and bright reflection of light from the teeth
or lips. The parabolas of the upper and lower lips should try to include more pink lips in

the template.

Figure 4.8 shows the eyes, and mouth detection results of Akiyo and Carphone sequences. It

shows that eyes and mouth can be detected precisely by using the proposed methods.

(@) (b)
Figure 4.8 — Eyes and mouth detection for Akiyo and Carphone sequence
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4.3.2 Chin Detection

For video coding of videophone sequences, the human face undergoes both rigid and non-rigid

motion. In order to represent the face motion precisely and reduce the warping error, efficient chin
detection algorithm is necessary.

Several methods have been proposed to estimate the chin contour [RUDIA-1996] [KAMP-1997a]
{GOTO-2002] [AHLBERG-2002]. Although the authors claim that their methods can achieve the
optimal chin position, which is commonly decided subjectively, their methods have been proved
to have some shortcomings. In [RUDIA-1996], the active contour model (Active Snake) has been
used to estimate the chin contour. The active snake model is an energy-minimizing spline
influenced by external forces and image features. However, when the chin contour appears
loosely marked due to weak contrast of the chin in relation to the neck below it, the reliability of
the Active Snake model is low. Furthermore, the initialisation of the Snake and the chosen
external force affect its performance seriously. In [KAMP-1997a}, the concept of deformable
templates is used to estimate the chin contour. Two parabolas are used to represent the chin, A
cost function is minimized to find the best fit of the template to the chin. However, experimental
results have shown that a deformable template can only be used for chins with parabola-like

shapes, for example, the chin of Akiyo and Claire. It cannot detect the chin of Carphone correctly.
This is due to the variety of chin shape.

In [GOTO-2002], the described chin detection method consists of three steps. First, three points
are found on both sides and the bottom tip of the chin. Next, a curve is found to connect these
three points. Finally, the position of this curve is modified to fit the chin better. However, it is not
easy to find these three points. If the camera is not placed exactly in the front view, the curve
fitting result cannot be accurate. In paper [AHLBERG-2002], Ahlberg presented a way to regard
the facial feature detection problems as an optimisation problem. Deformable graphs are used to
represent the relative position of features. However, this method is very complex and time-
consuming. The resulis given in [AHLBERG-2002] are not satisfactory.

In our research, an efficient chin detection method is proposed, which combines deformable
template matching with the active contour method. The prior chin shape is trained and exploited

in the active contour model to improve detection accuracy. The proposed method features three
major novelties.
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1. A deformable template-matching algorithm is applied to initialise the chin contour.
Therefore, no user interaction is needed to initialise the snake model. It can also avoid the
disadvantage of the method in [GOT0-2002].

2. In order to reduce the effect of weak chin edges and strong background edges, an edge
normalization step is introduced. Gradient vector flow (GVF) [XU-1997] is used to get

the smoother external force, which is derived from the normalized edge distribution.

3. Chin shape priors are trained and are included in the active snake model to improve its

robustness to weak contrast of the chin in relation to the neck below it, and partial
occlusion.

In section 4.3.2.1, the deformable template matching method is discussed for initial chin
detection. Section 4.3.2.2 describes the refinement of chin contour by using the active snake

method, which includes the scheme description, edge detection and the GVF calculation, and
prior shape training.

. @ (b)
Figure 4.9 — (a) Deformable template model for the chin contour; (b) Search region for points A,
Band C.

4.3.2.1 Initial chin estimation

It is known that the initialization of the active snake model will affect its final detection
performance. Sometimes, user interaction is required for the initialization, such as in [RUDIA-
1996]. In order to initialize the active contour model automatically, a deformable template
matching method is employed to initially estimate the chin contour. The deformable template for
the chin contour is shown in Figure 4.9 (), which can be described by the positions of 4, B, and
C . The points d1 and d2 are the detected mouth corners. Points B and C belong to the chin

parabolas and are located on the line which goes through the mouth corners. Based on the
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positions (x oY ,4)» (xa, y B) and (xc, yc) of A, B, and C, respectively, the chin contour can be
described. During our experiments, it is found that the accuracy and complexity of the deformable
template matching method are affected by the search ranges of point 4, B, and C. The search

ranges of 4, B, and C during the detection process are different from those used in [KAMP-
1997a] to make the search more robust, which are shown in Figure 4.9 (b).

In order to reduce the computational complexity further, the position of 4, B, and Ccan be
estimated sequentially. The detailed procedures are described as follows:

1. Points B and C are estimated by using the gradient value of chrominance difference
C, —C}. They are searched along the line that goes through the mouth corners. They are
also in the detected face region.

2

. Point A is moving in the search region to maximize cost function. The luminance valley
and the gradient are combined as the cost function. A larger search range is used for point

4 1in order to make it robust for all circumstances, such as face rotations.

The detected chin contour is decided by maximizing the total energy along the chin contour,
which is defined as:

E total = E valleys +E Gradient (44)
E upys = Normalize(255 - ) (4.5)
B it = Normalize(sqrt(Yf +Y} )) (4.6)

where function Normalize(x) normalizes the value x to the range [0,1]. The detected chin

contour is used as the initial position of the active snake.

4.3.2.2 Refinement of chin contour

4.3.2.2.1 General description
‘Not all chin contours have a parabola-like shape. For example, the deformable template matching

method does not perform very well for the Carphone sequence. Therefore, a refinement step is

needed to get correct chin detection for all of the test sequences.
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In our research, the snake (active contour) model, incorporating prior chin shape, is used to refine
the initial chin contour. The snake is an energy-minimizing spline, defined within an image
domain that can move under the influence of internal forces within the curve itself and external
forces derived from the image data. The internal and external forces are defined so that the snake
will conform to an object boundary or other desired features within an image. However, this
method may be sensitive to the starting position and may leak through the object if the edge
feature is not salient enough in a certain region of image. In our research, a prior chin shape

model is frained and incorporated in order to improve the robustness of the active snake.

There are many methods incorporating prior shape during boundary finding [STAIB-1992]
[COOTES-1995] [YONG-1998]. The method in [YONG-1998] is selected in our investigation
due to its less computation, which is ten times faster than the method in [COOTES-1995]. The
objective is to maximize the a posterior density of the final shape given the input edge image and

shape parameters, which can be expressed as (similar to that in [YONG-1998]):

J =arg max{ﬂl * (‘i I:_ Mﬂ +5* E:nake] @.7
o 20;

G

where vector Q=(q,,q2,---q,+l) is the pose and shape parameters, which will be defined and
discussed in section 4.3.2.2.3. m, is the mean value of shape parameters, which is defined to be
zero relative to the mean shape. o} is the eigenvector’s corresponding eigenvalues calculated
from the train sets. E_, . is the snake gradient-curvature energy along current snake contour. S,

and B, are used to balance the influence of the shape model and snake model. The trade-off

between shape and image depends on how much faith one has in the shape model and the imagery

for a given applications. In our experiments, we set these parameters empirically as f, =2 and

B, =1.
Above maximization can be achieved using the following processes:

The active snake model guides the contour evolution, which maximizes the cost
function E,,,,, .

Update the pose and shape parameter vector O to best fit the newly found points,

which can also maximize Equation (4.7).

3. Repeat until convergence
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The detail description of above processes are presented in section 4.3.2.2.2 and section 4.3.2.2.3

4.3.2.2.2 Snake-guided contour evolution

The objective of the first step in the above maximization algorithm is fo evolve the contour to
position with large gradient. Instead of using the active snake model in [RUDIA-1996] directly,

the following improvements have been conducted in order to achieve robust chin detection:

. First, Canny edge detector [CANNY-1986] is used to detect the weak edge by selecting

its proper parameters and generate the binary edge map. Commonly, there exists weak
contrast of the chin in relation to the neck below it.

Next, in order to get a smoother external edge and wider convergence range, GVE is

calculated and used as the external force, instead of using binary edge map directly.

Suppose that & discrete points are selected along the given active contour C . The discrete snake

energy E, . ¢an be expressed as follows:

N-1 N-1
Epae= LE; = Z(Ehu +E¢xt,l) (4.8)
i=0 i=0

where each E, depends on the contour segment between up to three points v,_,, v, and v,,, .

Thie dynamic programming algorithm in [AMINI-1990] has been used to search for the maximum
of (4.8). In the implementation, for node i, the search locations are restricted along the bisector
lines of the angle Zv,v,,,v,v,, . As the points are placed at regular intervals along the contour, the

internal energy in node : is selected as:

Ey =2—2008 £VV; 1, ViV 4.9)

In our research, an edge map is selected to induce the external energy E,,. The Canny edge
detector has been used to obtain the edge map [CANNY-1986]. The low threshold value that is
used in the hysteresis step of the Canny edge detector is set to 0 in order to detect the weak chin

edge. Short edges are removed in order to reduce the effect of noise in the face area, and a binary
edge map * BinaryEdgeMap ’ is generated.

If the binary edge map is used directly, the convergence of the active contour algorithm is still
affected by the chin shape. In order to improve its convergence, gradient vector flow (GVF) [XU-
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1997] is used as the external force, instead of using gradient directly. The main advantage of the

GVF is that it can capture a snake from a long range and extract it into concave regions.

We define the edge map f (x, y)= BinaryEdgeMap , which is derived from the detected face
patch. Gradient vector field is the vector field V' (x, y)= (u(x, y), wx, y)) that can be derived by

minimizing the following function:
&= [[keé +12 +32 +2)+ AV -t dxdy (4.10)

where u and v are the horizontal and vertical coordinates of vector field ¥ respectively; u is a

regularization parameter governing the trade-off between the first term and second term. This

vector field is smoother than the gradient when there is no intensity change. Particularly, when

|Vf| is small, the energy is dominated by partial derivatives of the vector field. On the other

hand, when |Vf | is large, the second term dominates the integrand and is minimized by setting

V=|vf|.

Using variational calculus, the GVF can be found by solving the following Euler equations:

(4.11)

-z

AN

(@ (®)
Figure 4.10 — (a): Edge map after Gaussian kernel smoothing; (b): GVF image

From Equation (4.10), we note that in homogeneous regions, the second term of both equations is

zero. Therefore, within these regions, # and v are each determined by Laplace’s equation. Figure
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4.10 shows the calculated edge map gradient of a simulated half-circle edge, and the calculated
edge GVF field. It is found that the edge map GVF is smoother and has a wide convergence

range. The external force E_, in Equation (4.8) is replaced by V(x, y) ;
4.3.2.2.3 Prior shape calculation

Before incorporating the prior shape into the contour detection scheme, a set of training chin
contours are exploited to deduce the model distribution, which is based on the mean positions of

the points on the aligned shapes and the main variation of the points from the mean [YONG-
1998).

Suppose each shape can then be represented by a 2N -element vector Z = (x,, ik I ) -

When all chin contours of the training image are aligned into a common coordinate frame, a cloud
in the 2N dimensional space is formulated. In our research, Principal Component Analysis
(PCA) is applied to model the data, which computes the main axes of this cloud. Based on this
model, we can generate new examples, similar to those in the original training set, and we can
examine new shapes to decide whether they are plausible examples.

Based on § aligned tfraining samples, we can calculate the mean shape and the covariance about
the mean as:

Ful Z; (4.12)
S

-,
]
—

=3z, -7z, -2V . . (4.13)

s—1li=

It can be shown that, by principal component analysis, the eigenvectors of the covariance matrix

C, comresponding to the largest eigenvalues describe the most significant shape model of
variation. After computing the eigenvectors p,, and their corresponding eigenvalues A; of C, the

first ¢ largest eigenvalues are chosen such that:

4

24,2098 4, (4.14)
i1

Any shape in the training set can be approximated using the mean shape and a weighted sum of
deviations obtained from the first # shape models:

Z,~Z+Pq (4.15)
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where P= (p, |p,|-| p,) contains ¢ eigenvectors of the covariance matrix and
q=(q,,q2,---q,) is the vector of weights, which is also the set of ¢ shape parameters to be

optimised in Equation (4.7). Equation (4.15) allows us to generate new examples of shapes by
varying the parameters ¢ =(g,,¢,,", ).

During our research, 350 training chin contours are selected from face databases [PHUNG-2002]
[FACE-2004a) [FACE-2004b], which contain different face shape, pose, and expressions. Before

aligning all chin contours, they are normalized by the distance d, horizontally and by distance d,

vertically, and rotated by a degrees to make the line between the two eye centres horizontal, as
shown in Figure 4.11 (a). After being normalized and rotated, each contour is annotated with 46
points, which are sampled from —90° to 90° with 4° between each two consecutive points. The
sampled contours are listed in Figure 4.11 (b), where the mouth centre is the origin of the

coordinates. The iterative approach in [COOTES-1995] is applied to align the sampled contours,
as shown in Figure 4.11 (c).

\\\\ |
/////!

(@) (b) (©)
Figure 4.11 — Trained chin contour. (a): Normalized chin contour; (b): Sampled chin contours

after normalisation; (c): Aligned chin contours

After aligning the training set, the PCA algorithm is used to calculate the model distribution. We
found that the shape model is mainly decided by the first 4 shape parameters, which can explain

98% of the variance of point position in the training set. Therefore, £ =4 is chosen and applied
throughout the experiments.

Figure 4.12 shows the effect of varying the four shape parameters in turn between +2.5 standard
deviations, leaving all other parameters at zero. It is found that these models can explain global

variation due to different face shape, pose, and expression. Less significant modes cause smaller
and more local changes, such as in Figure 4.12 (c) and (d).
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Before updating the pose and shape parameter vector Q to best fit the newly found points, which

are detected by the proposed active snake algorithm, the detected points should be rotated by an

angle &, which is constant during evolution. Therefore, the pose and shape parameter vector Q
only consists of one scale parameter s and four shape parameters (g,,4,,43,9 +)- We can adjust
0=(s, qnqqu‘h) to achieve the objective in formula (4.7). In (4.7), the mean m, for each

shape parameter is 0 and its variance o, is the eigenvector’s cotresponding eigenvalues. The

mean for scale is 1 and variance is set to 0.5.

@
Figure 4.12 - Effects of varying each of first four chin model shape parameters in turn between
+2.5 standard deviations, leaving all other parameters at zero. () Model 1; (b) Model 2; (c)
Model 3; (d) Model 4

4.4 2-D Scalable face model design

In the proposed scalable 2D model-based video coding scheme, the human face is considered as a
special object and is modelled separately from other video objects since the human face
undergoes both rigid and non-tigid motion, Its motion description is complex. Furthermore, the
human face is more important and small warping error during video coding is annoying. Much
research has been conducted on facial feature motion analysis and description [WATERS-1987].

This a priori information can be used for our scalable model design.

84




Chapter 4. Face detection and its scalable modelling

In our research, a heuristic scalable face model is constructed, based on the muscle distribution of
human faces in [WATERS-1987). During scalable model design, more important nodes in the
lower level are allocated to the face features and intersection points between different muscles in

order to represent the facial motion more precisely and reduce the estimation and warping error
during video coding.

In our research, a three-level scalable face model is designed which is shown in Figure 4.13. The
design process is described as follows:

15
@

Figure 4.13 — Scalable face model design. (a) layer 1; (b) layer 2; and (c) layer 3

First, eight nodes and four nodes are allocated on the eyes and mouth respectively to represent
their movement. In addition, five nodes are used to approximate the contour of chin. The points
13 and 17 are found by extending the interconnecting lines between the mouth right and left
corners towards the borders of the face segment. Point 15 is the intersection point between the line
formed by interconnecting the mouth upper and lower corners (point 10 and point 12), and the

detected chin. These points are very important to represent the movement of the face and are
included in the lowest level 1 (from 1 to 17 in Figure 4.13 (a)).

For level 2, shown in Figure 4.13 (b), six additional points are introduced to represent the
movement of eycbrows and nose (from 18 to 23). They are useful for head motion estimation. For

points 22 and 23, if the face size is small, they are merged at one point located in the middle of
their positions.

For level 3, 8 additional points are allocated mainly based on the face muscle distribution
[WATERS-1987]. The scalable model of level 3 is shown in Figure 4.13 (c). The points P4 and
PB are only auxiliary points to deduce other points’ position, which are not included in the
scalable face model. They are found by extending the interconnecting lines between the

predetermined points of eye corners towards the borders of the face segment. Points 25 and 26 are
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located at the middle of line segments joining mouth comners to points PA and PB. The locations
of other points are shown in Figure 4.13 (¢). This heuristic model is based on the face muscie
distributions used to represent the face motion. A more complex model can be designed if more

complex face expression needs to be encoded.

Figure 4.14 — Face and facial feature detection results with different skin colour
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4.5 Experimental results

4.5.1 Results for eye-mouth detection

The objective of our proposed methods in section 4.3.1 is to detect the frontal or near-frontal view
of the face under varying lighting conditions so that the scalable face model can be designed
automatically. Therefore, profile views of the face are not considered in the experiments. In
section 4.3.1, some results are presented that demonstrate the performance of the proposed
method. More images and image sequences are used in this section to test the performance of the
proposed methods for face and facial feature detection. Almost 300 human faces are used. These

faces cover several racial groups and varying lighting conditions. All of the faces are localised

correctly (accurate rate is 100%) and eye-mouth features are extracted properly.

Some face and facial feature detection results are illustrated in Figure 4.14. The first colummn
shows the original images. The second column gives the detected face patches. The third column
shows the detected eyes, and mouth components. From the results, the proposed algorithms can

~ detect the facial features correctly, irrespective of whether the face is under strong lighting or
uneven lighting conditions.

4.5.2 Experimental results for chin detection

Extensive simulations have been conducted to evaluate the performance of the proposed chin
detection algorithm in section 4.3.2 and compare it to other published methods [YULLE-1992])
[KAMP-1997a). Figure 4.15 shows the performance of a number of chin detection algorithms.
The first method is the chin detection algorithm using deformable template matching. The second
one is the initial version of our proposed method without incorporating the prior chin shape [HU-
2003]. The third method is the proposed method including the prior chin shape.

For column (a) in Figure 4.15, deformable template matching algorithm has been applied. For
some face shapes, such as Akiyo, the chin contour can be detected correctly. However, for most
faces, its performance is rather poor. This is because not all chin shapes can be represented by
parabolic curves. Column (b) lists the detection results using our method in [HU-2003] without
considering the prior shape. Compared with those in (a), the proposed chin detection method
achieves higher detection accuracy than deformable template matching. For example, for the
Carphone face in row 2, chin detection is improved greatly. It is shown that the proposed method

can detect chins with different face shapes. However, as no global information is used, the
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detected chin contour is not smoother than (a). Images in column (c) of Figure 4.15 show
detection results generated by our proposed method including the prior shape information, As the
prior shape of the chin contour has been taken into account, the proposed method can achieve a
smoother and more accurate chin contour. Figure 4.16 shows the ability of the proposed algorithm
to cope with weak chin edges and cluttered backgrounds. Image (a) is the original image taken in
Lab. Image (b) shows the chin detection result by using the active snake model in [RUDIA-19961.

It is found that the algorithm in [RUDIA-1996] is seriously affected by strong edges and cannot
converge 1o an accurate chin position, as shown in Figure 4.16 (b). Figure 4.16 (c) shows the
result from using the method in [HU-2003]. As the low threshold value, used in the hysteresis step
of the Canny edge detector, is set to 0, the weak chin edge is detected. Then, all the edge gradient
values are set to 1 and short edges are removed. This can remove the effect of strong edges and
noises around the chin contour. Furthermore, as deformable template matching method is used to
detect the initial chin contour, this can improve the detection performance greatly. However, as no
prior shape information is incorporated in the snake model, the detecied chin contour is not
smooth enough. The chin contour in Figure 4.16 (d) is detected using our proposed method
incorporating prior shape information in the snake model. It can be seen that this method achieves

a smoother chin contour than the method in [HU-2003] without taking the prior shape into
consideration.

The performance of the proposed method for coping with occlusion has also been investigated.
The main idea of introducing the chin shape prior is to allow the detection method to cope with
missing or misleading information. In the case of occlusion, we expect the statistical shape prior
to inducing a reconstruction of the shape contour that is not visible. Figure 4.17 (a) shows the
image, in which a small part of chin is occluded. We found that the methods in [RUDIA-1996]
and [HU-2Q03] can not detect the chin contour correctly, as illustrated in Figure 4,17 (b) and (c).
The detection result of the proposed method is illustrated in Figure 4.17 (d). The chin shape is
reconstructed according to the shape prior in the area where the occlusion occurs. However, if the
size of occlusion is very large, the quality of the detection result degrades because the information

contained in the image may not be sufficient to correctly guide the snake model to the correct
position '
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(©)

Figure 4.15 — Comparison of chin detection results by using different methods: Column (a):

deformable template matching in [YULLE-1992]; Column (b): Our proposed method in [HU-
2003] without taking the prior shape into consideration; (¢): The proposed chin method in section

4.3.2 incorporating prior chin shape.
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(d)

Figure 4,16 — Chin detection results for the image with weak chin edge and cluttered background;
(a): Onginal image; (b): Detection method in [RUDIA-1996]; (c): Our proposed method in [HU-
2003] without taking the prior shape into consideration; (d): The proposed chin method in section

4.3.2 incorporating prior chin shape.
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(c) (d)
Figure 4.17 - Chin detection results for the image with occlusion; (a): Original image; (b):
Detection method in [RUDIA-1996]; (¢): Our proposed method in [HU-2003] without taking the
prior shape into consideration; (d): The proposed chin method in section 4.3.2 incorporating prior

chin shape
4.5.3 Results for scalable face model design and evaluation

Four head-shoulder sequences (QCIF) are used to test the performance of the designed scalable
face model for representing face motion through video sequence. They are Carphone, Akiyo,

Claire, and Miss_am.

Before designing the scalable model of the foreground head-shoulder objects, we first segment the
object into face object and human body object (including hair part). Then, for a human body part,
the content-adaptive scalable model is designed, where three levels are chosen. For face objects,
the method described in section 4.4 is used to design the scalable face models. They are combined

to achieve three-level representation of the foreground head-shoulder object.

(@ (b) (c)
Figure 4.18 — Scalable object models (three levels) for Carphone sequence, the number of control

points are 63, 37, 50 for (a) Level 0, (b) Level 1, (¢) Level 2, respectively
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Figure 4.18 and Figure 4.19 demonstrate the designed scalable models of head-shoulder objects

for Carphone sequence and Akiyo sequence. TABLE 4.2 lists the number of control points in

different levels for Carphone, Akiyo, Claire, and Miss_am sequences.

Table 4.2 — The number of control points for different levels

Carphone Akiyo Miss_am | Claire
Level 0 63 54 ‘ 42 ] 40
Level 1 37 35 7 36 4 30 ]
Level 2 50 51 4é 4(; b

(a)

Figure 4.19 — Scalable object models (three levels) for Akiyo sequence, the number of control

(b)

(©)

points are 54, 35, 51 for (a) Level 0, (b) Level 1, (c) Level 2, respectively

Table 4.3 — Average warping PSNR values (dB) for different levels of representation

Average PSNR Value (dB)
Level 0 Level 1 Level 2
Claire (QCIF) 31.46 34.27 39.02
Miss_am (QCIF) 33.14 36.57 4023
Carphone (QCIF) 32.82 34.39 35.78
Akiyo (QCIF) 31.25 32.91 3591
PSNR of Akiyo (QCIF) using
method in [BEEK-1999] 28.64 29.27 30.56

In order to test the performance of scalable face model, for every video sequence, four frames

(frame 2, 4, 6 and 8) are warped from frame 0 based on the designed scalable model. The motion

vectors (MVs) of the control points are estimated by using our proposed method with Y% - pixel

resolution that will be discussed in section 5.3.2 of Chapter 5 in details. Then, average PSNR

values of every level are calculated for the warped four frames (frame 2, 4, 6, and 8) with
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reference to their corresponding original frames. During the PSNR calculation, only the
intersection of the warped and original VOP alpha-plane regions is considered. TABLE 4.3 lists
the PSNR values of Carphone, Claire, Miss_am and Akiyo sequences. Compared with the results
in {BEEK-1999], for Akiyo sequence, the proposed method can achieve about 2-5 dB

improvements. It shows that the designed scalable face models can represent the object motion
more precisely than the published methods.

4.6 Conclusions

In this chapter, facial feature detection and scalable face model design techniques are investigated
for achieving scalable 2D model-based video coding. First, a luminance-adaptive skin colour
model is proposed, which is robust to different lighting conditions. A reliable and efficient face
localisation and facial feature extraction scheme has also been proposed. These methods can
achieve precise and reliable eye, and mouth detection. As the chin contour is one of the most
important face features for designing 2D scalable face models, it has been intensively studied
during our research. An efficient chin detection scheme has been presented to estimate the chin
contour of the human face. After face localization and mouth comner detection, deformable
template matching method is used to detect the rough chin position. This is in turn used as the
initialization of the active snake model for contour refinement. In order to improve its
performance, prior chin shape is trained and incorporated into the active snake model. During
external energy calculation for snake model, Canny edge detector is first applied to detect weak
chin edges by choosing proper parameters. Then, the GVF of a binary edge map is used as the
external force in order to improve the convergence of the active snake model and increase
robustness in the case of weak chin edges. For face detection, the proposed algorithm in section
4.3.1 is robust to different skin colour and luminance. For chin detection, some comparisons with
other published detection methods have been presented to show the robustness of the proposed
method in section 4.3.2 to weak chin edges and partial occlusion.

After extracting the facial features, a heuristic scalable face model is designed based on face
muscular distributions and the detected facial features. In order to evaluate the designed scalable
face model, a novel motion estimation scheme is proposed which can estimate the model motion
precisely although some points are allocated on the textureless region, such as the part of human
face. A thorough experimental study has been conducted to show the efficiency of the proposed
method in Section 4.4 for scalable face model design. Experimental results show that the designed
scalable model can represent the face motion more precisely than previously published techniques
and the proposed algorithms can achieve automatic facial model design.
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Chapter 5

Scalable Object Modelling and Model

Compression

MPEG-4 is an object-based multimedia compression standard which allows encoding different
audio-visual objects (AVO’s) separately [MPEG4-2001]. These AVO’s are decoded and then
composited at the user terminal according to a transmitted scene description script. For example,
each video object is modelled by its shape (includes 2D and 3D), motion and texture (colour). For
shape modelling of video object, 2D mesh modelling can be considered as a projection of a 3D
polygon mesh model onto the image plane by perspective projection, Moreover, implicit in 2D
object mesh models is a compact representation of the shape of each VOP. This is given by the
polygonal boundary of the mesh, which is named as 2D vertex-based shape description. 2D mesh

representation of video objects enables the following functions:
1. Video object compression

Mesh model may improve coding efficiency visually. It provides better motion compensation

than translational-block models, and results in fewer blocking artefacts at low bit rates.

2. Video object manipulation
It includes augmenied reality, spatio-temporal interpolation and synthetic-object
transfiguration/animation. For example, it can enable the replacement of a natural video
object in a video clip by another video object.

3. Content-based video indexing

It can provide accurate information that can be used to retrieve visual objects with specific

motion. It can also provide vertex-based object shape representation, which is more efficient
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than the bitmap representation used for shape-based object retrieval in MPEG-7 [MPEG7-
2002].

In 2-D model-based video coding, the information about model (such as object shape and content-
adaptive object mesh model) should be included in the encoded bitstream and sent to the decoder,
which is the difference between the model-based / object-based coding scheme and the
conventional frame-based coding schemes. Commonly, the cost of model compression is high,
especially at low bit rate environment. On the other hand, object model, especially object contour,
contains important and sensitive visual information to human eyes. Object shape should be
represented precisely, encoded efficiently, and transmitted robustly. A large number of techniques
have been proposed in order to transmit the object contour efficiently [CONNELL-1997]
[GERKIN-1997] [CHUNG-2000] [JONG-2000].

For 2D mesh modelling of video objects, it is commonly possible to model the shape and motion
in a unified framework. However, during our research, object shape and interior model are treated
separately. That is, we separate the vertices of the object mesh model into two parts: vertices for
shape and vertices for interior object (or vertices of the interior object), and different
representation and compression schemes are proposed for them. The reasons for separating the

vertices of the object mesh model into two parts are:

. Object shape contains more important and visually sensitive information. More

protection is required when sending it over error-prone channels.

° Object shape information has other important functionalities, such as video object index

and retrieval. Above separation can facilitate further manipulation;

The objective of this Chapter is to investigate scalable object modelling and model compression.
In section 5.1, the well known lossy and lossless shape representation schemes are reviewed,
followed by the discussion of main model design and coding techniques that include content-
adaptive mesh model design, block-based shape coding, contour-based shape coding, and scalable
shape compression. In section 5.2, scalable shape representation and compression (both intra and
inter) are investigated. Both intra- and predictive scalable shape-coding algorithms have been
proposed during our investigation to improve the coding efficiency of object shape. Section 5.3
gives a detailed description of the proposed schemes for object mesh design (interior object) and
compression. For the vertices of the interior object, a coarse-to-fine strategy is used to allocate the
control points due to its simple implementation at no loss of accuracy. The most important
proposal on this is trying to make the mesh edge conform to the object boundary. In this way, the
warping error can be reduced and object motion can be estimated precisely [NAKAYA-1994].
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Extensive experiments have been conducted and some results are illustrated in section 5.4,

followed by conclusions of this Chapter.

5.1 Overview

The emergence of new multimedia applications, such as searching, indexing and manipulation of
visual information at the semantic object level, requires further research on video representation
and coding. In past decades, much research has been conducted on content-adaptive mesh design,

shape representation and compression, and some are standardized in MPEG-4 [MPEG4-2001].

There are two kinds of mesh applied to represent the object motion: regular mesh and content-
adaptive mesh. As regular meshes can be setup at both the encoder and decoder without geometry
overhead, it is sufficient to transmit only node motion vectors. However, regular meshes cannot
adapt the mesh structure based on the content of the video object to represent the motion more
accurately., Content-adaptive meshes can overcome this drawback with the cost of transmitting
mitial mesh geometry [NAKAYA-1994] [WANG-1994a]) [HUANG-1994] [ECKERT-1997].
Several techniques have been discussed on how to design content-adaptive object meshes
[ALTUNB-1997], which are reviewed in section 5.1.1,

In recent years, significant research has been performed on shape coding in the framework of
MPEG-4 standardization activities, Shape also plays an important role in image database search
and retrieval applications, which are addressed by MPEG-7 standard [MPEG7-2002). A large
number of shape coding algorithms have been proposed [BRADY-1997] [ETOH-1997]
[YAMAG-1997] [CONNELL-1997] [GERKIN-1997] [CHUNG-2000]. These shape coding
algorithms can be classified into two categories: block-based and contour-based
[KATSAGGELOS-1998], which are reviewed in section 5.1.3 and 5.1.4 respectively.

Furthermore, scalable shape representation and compression is an important requirement of new
applications. For example, one of the key requirements of MPEG-7 applications is to perform
very fast shape filtering and browsing through rough shape reconstruction, but also has the ability
to perform full resolution shape rendering. Scalable shape representation and compression lend
themselves naturally to these requirements. Scalable shape compression also facilitates shape
transmission over error-prone channels or the channels with variable bandwidth. Many scalable
shape-coding methods have also been proposed [QIAN-1997) [JORDAN-1998] [MELNIKOV-
2000a] [MELNIKOV-2000b], which will be reviewed in detail in Section 5.1.4.
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S.1.1 Content-adaptive mesh model design and coding

Y. Nakaya et al [NAKAYA-1994] proposed a hexagonal matching procedure for motion
compensation based on a uniform mesh. Uniform meshes are suitable for “motion compensation
by redesign”, that is, a new uniform mesh is overlaid on each frame % and motion vectors of the
object model are estimated from frame & to £ —1 for motion compensation. Unfortunately,
uniform meshes are often inadequate for representing the motion near object boundaries, where a
patch may contain two or more different motions. This problem may be addressed by splitting
these patches with more than one motion into smaller patches [HUANG-1994], resulting in a

hierarchical mesh. Information about this splitting must be transmitted as overhead.

A more fundamental approach to overcome the problems of uniform mesh elements is to design a
content-adaptive mesh model. Wang et al [WANG-1994a] proposed an optimization framework
for motion compensation based on an active mesh that adapts to scene content. However, this
content-adaptive mesh is not suitable for motion compensation by redesign because transmission
of all node locations at each frame constitutes an excessive amount of overhead. Furthermore,
these mesh models enforce connectivity of the structure everywhere, which imposes a global
smoothness constraint on the 2-D motion field and is unsuitable for motion compensation across

the motion and occlusion boundaries.

Y. Altunbasak et al [ALTUNB-1997] proposed an occlusion-adaptive mesh model to solve this
problem. Occlusion regions are classified as Background to Be Covered (BTBC) and Uncovered
Background (UB). No node points are allowed in the BTBC regions and the meshes within the
failure regions are redefined for subsequent tracking. The success of forward tracking is closely
related to how well it can detect occlusion and model failure regions together with the motion
estimation near their boundaries. In motion compensation by forward tracking, positions of all
nodes need to be transmitted only for selected key frames. For other frames, it is sufficient to
transmit the boundaries of the BTBC regions and the locations of the newly added nodes in the

mesh model.

In order to reduce the warping errors occurring over object borders, M. Eckert, et al [ECKERT-
1997], proposed an object-based motion compensation scheme. In this scheme, all border nodes
are assigned to the adjacent regions and every region is triangulated individually. The single
object meshes are then connected to a complete mesh over the whole image, which covers all
region contours with friangular edges. During motion estimation, the mesh has to be split object

by object at the points where motion discontinuities occur. The particular objects are transformed
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individually. Uncovered parts can be detected during the process of motion compensation. In
paper [IZQUIER-1999], E. Izquierdo proposed a 3-D modeling method for arbitrary objects based
on geometric surface conformity. The proposed technique uses feature points and relevant edges
in the images as the node and edges of an initial 2-D wire grid. Starting from this initial 2-D
model, the 3-D wireframe is generated by fitting the 2-D model to a previously recovered depth
map of the object. The 3-D wireframe is deformed and updated from frame to frame according to

the motion of the chosen nodes.

In recent years, hierarchical representation of 2-D dynamic meshes has attracted atiention. It
provides rendering at various levels of detail. It not only allows scalable transmission of the object
geometry and motion information, but also enables improved tracking performance. Detailed
algorithms on hierarchical content-adaptive model design and update are discussed in [BEEK-
1999] [CELASUM-2000]. In the design algorithm of paper [BEEK-1999], a finely detailed 2-D
mesh is designed for the initial video object plane. Then, a hierarchical representation is
constructed by simplifying this mesh from fine to coarse levels, During the finely detailed 2-D
mesh design, nodes are placed at salient intensity corner points on the boundary and inferior of the
video object plane. The initial mesh topology is constructed using constrained Delaunay
triangulation of the node points, where the boundary edge segments serve as constraints in order
to confine the resulting triangles within the boundary polygon. During the simplification of the
fine mesh, an independent set of nodes from the finer level is removed to obtain the coarser level,
It is naturally desirable to eliminate less “important” nodes first in the mesh simplification
process, such that essential mesh features of the mesh geometry are retained. Some complex
image-, shape-, and motion-based criteria are proposed in [BEEK-1999] [CEL.ASUM-2000] for
determining the importance of a node adaptively. Dynamic programming is used to optimize the
mesh. These methods share the disadvantages of high computational complexity. Furthermore, the

edge of triangles does not guarantee to conform to the object boundary and interior edges.

5.1.2 Fourier descriptor of object shape

In the Fourier descriptor of object contour, the object contour is considered as a set of ordered
points defined on the complex plane [SALE-1996]. The coordinates of a closed contour can be
seen as a periodic complex sequence. Fourier descriptors are first calculated as the Fourier series
coefficients of this complex sequence; then the Fourier descriptors are encoded. In order to get an
accurate reconstructed contour, the bitrate needed to accurately encode these Fourier descriptors is
usually high, Therefore, the coding efficiency of the Fourier descriptors approach is not enough

for high quality contour coding.
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5.1.3 Block-based shape coding — CAE

In block-based shape coding, object shape is represented by a binary image mask and context-
based arithmetic encoding (CAE) [BRADY-1997] is used to coding the mask. CAE is one of the
most successful methods for binary image coding and is applied in JBIG standard [JBIG-1993]. It
is also applied successfully in binary shape coding, and is a block-based shape coding scheme. In
CAE [BRADY-1997] [ETOH-1997] [YAMAG-1997], it is assumed that a high degree of local
correlation exists in the shape image. Each pixel is encoded according to a conditional probability
distribution that is conditional upon its context — the value of pixels in a local neighbourhood. The
neighbourhood’s shape and size are represented by a template, and this context is used to access a
table containing probability distributions. The table is created by a training procedure prior to
coding. It also can be adapted during the coding procedure in the case of the adaptive CAE. The
widely used templates for the Infra- and Inter-mode coding are shown in Figure 5.1.
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Figure 5.1 — Templates used in context-based arithmetic coding. (a) Template for intra mode; (b)

Template for inter mode

The main feature of block-based shape coding is its superior coding efficiency, while bearing a
relatively low complexity. It is also well adapted for low delay applications. For video coding
applications, it has been extended to achieve block-based coding and temporal prediction, as
described in [BRADY-1997]. The CAE has been adopted and well integrated into the current
MPEG-4 standard. However, the block size conversion in the MPEG-4 shape-coding scheme,
which applies the CAE technique, shows a visually annoying staircase effect [BRADY-1997].

5.1.4 Contour-based shape coding

Object shape can also be represented by its contours. Contour-based shape coding schemes

perform compression along the outlines of a segmented object, so that each contour can be
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endowed with dedicated semantics to describe the object in a contour-by-contour manner. That is
of interest in applications where a high level, semantic representation is needed. In the past
decades, many contour-based shape-coding methods have been proposed [FREEMAN-1961]
[CONNELL-1997] [GERKIN-1997] [CHUNG-2000] [KANEKO-1985] [LU-1991] [LEE-1999]
[CHO-1999] [JONG-2000]. These methods can be further classified info lossless coding
[FREEMAN-1961] [KANEKO-1985] [LU-1991] and lossy coding schemes [CONNELL-1997]
[GERKIN-1997] [CHUNG-2000] [CHO-1999] [JONG-2000].

For lossless contour coding, chain coding is one of the most frequently used methods
[FREEMAN-1961] [KANEKO-1985] [LU-1991]. In the chain coding method, the contour
information is encoded pixel by pixel. From the starting point, the directional vectors between
successive contour pixels are encoded. Since Freeman’s chain code was introduced in 1961
[FREEMAN-1961], improvements in chain code representation have yielded several simple
lossless contour compression methods [KANEKO-1985] [LU-1991]. In method [LU-1991], Lu
and Dunham developed chain coding schemes using higher-order Markov models combined with
arithmetic coding, which offer 50% and 25% coding gains over Freeman’s chain codes and
differential chain coding, respectively. The codes are close to the theoretical upper bound on the
compression ratio for lossless differential chain coding. Lossless schemes, however, are not
sufficiently flexible to allow the control of shape bit-rate in order to negotiate service quality with

available bandwidth, Therefore, lossy shape coding is needed,

In order to achieve lossy shape coding schemes, the object contour should be approximated by an
ordered set of vertices properly selected from a given contour. Only the positions of the selected
vertices need to be compressed. Therefore, the lossy shape coding methods mainly consist of
three steps: vertex selection, vertex encoding, and approximation reconstruction. There are many
vertex selection algorithms for computer vision and pattern recognition [ANSARI-1991]
[DUNHAM-1986]. The iterated refinement method (IRM) [GERKIN-1997] has been widely used
because it can be easily implemented and makes control feasible. Recently, optimized vertex
selection methods [KATSAGGELOS-1998) [SCHUSTER-1998] have been proposed. They give

optimal vertices in the rate-distortion sense but also result in high computational complexity.

For better coding efficiency, various vertex encoding schemes have been proposed. In
[CONNELL-1997], O’Connell presented an object-adaptive vertex-encoding (OAVE) scheme,
which adjusts the dynamic range of the relative addresses for each contour and use an octant
representation for each vertex address. This idea extends chain coding for lossy shape coding,
Experimental results show that OAVE combined with adaptive arithmetic coding for encoding a

composite relative address can achieve better compression performance than CAE [CONNELL-
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1996]. In 2000, Jae-won Chung introduced a new binary shape coder for high coding efficiency,
in which 1D vertex detection, vertex reordering and initial vertex encoding methods are included
[CHUNG-2000].

In [LEE-1999], Lee, etc., proposed a baseline-based shape coding method for both lossless and
lossy contour coding. In this method, a baseline is first chosen for a given shape image such that
the projection of the shape onto the x-axis is the longest. Then, the distance from each contour
point to this baseline is extracted as well as the turning points. The distance data are encoded by
an entropy coder. In the lossy mode, the distance data are subsampled first and then are entropy

encoded. On the decoder size, the reconstrucied data are interpolated to get the whole contour.

In [KATSAGGELOS-1998] and [SCHUSTER-1998], a framework for the rate-distortion
operationally optimal encoding of shape information in the intra mode is proposed. First order
(polygons) and higher order (i.e. splines) approximation techniques are adopied to represent the
boundary, and the control points of these curves are encoded to achieve the R-D optimised result.
For these techniques, one of the disadvantages is their computational complexity during R-D

optimisation for veriex selection,

Wang, etc., recently proposed an efficient rate-distortion optimal shape-coding scheme utilising a
skeleton-based decomposition [WANG-2003]. The approach decouples the shape information
into independent signal data sets: the skeleton and the boundary distance from the skeleton. The
major benefit of this approach is that it allows for a flexible tradeoff between approximation error
and bit budget. Experimental results in this paper demonstrate that the proposed algorithms result
in a significant improvement in rate-distortion efficiency with respect to other rate-distortion
optimised shape encoders. However, this method has the same disadvantage as those in
[KATSAGGELOS-1998] [SCHUSTER-1998] due to its high computational complexity during R-

D optimisation,

Temporal information has also been exploited in many shape-coding methods, such as [GERKIN-
1997] [GU-1995] [CHO-1999] [MELNIKOV-1999] [JONG-2000], to achieve higher coding
efficiency. Gerkin demonstrated an improved vertex-based coding scheme using a vertex-list-
update predictive coding algorithm [GERKIN-1997]. As the veriex prediction performance is
dependent on vertex selection, and the size of the list update information is significant for a large
number of vertices, the performance of this method is not very satisfying. Gu [GU-1995]
proposed the predictive shape-coding technique, exploiting the temporal correlation. In this
technique, only contours yielding relatively large motion-failure (MF) regions are encoded for

transmission, in which the lossless chain coding technique is employed for encoding the contour,
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However, the MF regions are distributed in a sparse and isolated manner, requiring large
overheads to represent each isolated contour using chain codes. Sung Ho Cho, et. al [CHO-1999]
proposed a technique based on the segment-based chain-coding scheme. First, a two-stage motion
compensation technique is present in order to cope with complex motion. Furthermore, by
defining the error band, the method can be applied for lossy encoding, by which the bits required
for the contours can be adjusted according to the channel condition. Jong I1 Kim, et. al [JONG-
2000], introduced a generalized predictive shape coding (GPSC) scheme, which improves the
performance of the method in [CHO-1999] by introducing a 1-D reference index-based coding

scheme.

Although the methods in [CHO-1999] and [JONG-2000] can improve the contour coding
efficiency by incorporating the temporal information during coding, they cannot achieve scalable
shape coding that is desirable for multimedia networks and devices with different bandwidths and
available decoding powers. Furthermore, during motion estimation, the contour motion is
assumed as translational motion. This assumption does not work well when there is zooming
and/or rotation. For non-rigid object motion, different motion patterns exist for different contour

segments, It is difficult to use one motion model to describe them.

5.1.5 Scalable shape coding

In multimedia networks, devices with different bandwidths and available decoding powers are
interconnected. Bitstream scalability is desirable, so that simple decoding of the first bits results in
a coarse shape approximation that may be further refined. Scalable representation and coding is
also desirable for new functionalities such as indexing and retrieval of the shape information.
Many scalable shape-coding methods have been published in the past decades [CONNELL-1996]
[QIAN-1997] [JORDAN-1998] [MELNIKOV-2000a] [MELNIKOV-2000b]. These schemes can

be considered as extensions of block-based shape coding and contour-based shape coding.

For block-based shape coding techniques, in order to achieve scalability, the binary map is first
decomposed into several layers of different resolution. The basic layer, that is the layer with the
lowest resolution, is coded using the classical non-scalable technique. The enhancement layers are

then encoded in a similar fashion but using a different template [CONNELL-1996] [QIAN-1997].
For contour-based shape coding, the object contour should be represented progressively in order

to achieve scalable coding. First, a coarse polygon approximation is built. The resuiting vertices

corresponding to salient points along the contour are encoded by any existing vertex-based coding
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method so that the decoder can rapidly access them for fast browsing/retrieval. Complementary
lossless representation for final rendering is achieved by successively transmitting the polygonal
approximation refinements. The insertion orders of the refinement vertices, as well as their

positions, are encoded relative to the coarser polygon edges.

Several methods have been published for progressive representation of object contours [GERKIN-
1997] [JORDAN-1998] [MELNIKOV-2000a] {MELNIKOV-2000b]. The most popular method is
the iterated refinement method (IRM) in [GERKIN-1997] due to its simplicity. However, this
method can only achieve sub-optimal vertex selection. In order to improve its performance, some
hybrid schemes have been proposed by using the information of contour geometry [JORDAN-
1998], vertex adjustment method [CHUNG-2000], and rate-distortion optimization scheme
[MELNIKOV-2000a] [MELNIKOV-2000b].

Although much research has focused on scalable shape coding in recent years, the experimental
results show that these methods cannot achieve higher compression efficiency for (near-) lossless
shape coding and they lack optimality in both intra and inter modes of the operation
[KATSAGGELOS-1998]. Therefore, further research is still necessary for scalable shape coding,

5.2 Proposal for scalable shape representation and coding

In our research, scalable vertex-based shape coding schemes (both intra- and inter-coding) are
studied to achieve higher coding efficiency. For scalable vertex-based shape coding, the efforts

include:

° First, an optimal vertex selection scheme is proposed, which can achieve less
approximation vertex number as shown by the results in section 5.4.2.1. Furthermore,
the most important vertices, which correspond to the salient feature of object shape, are

included in the coarser layers to facilitate shape manipulations, such as shape retrieval.
° Second, an efficient vertex-based intra-encoding scheme is proposed. The information
of the transmitted coarser layers is exploited to improve coding efficiency of current

layer.

° Third, a scalable predictive shape-coding scheme is presented. In this scheme, object

contours are effectively compressed with the aid of temporal information. The proposed
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intra and predictive coding schemes offer the content-based shape description together

with the quality scalable representation.
5.2.1 Scalable shape representation

In recent years, many vertex selection algorithms have been proposed, such as [GERKIN-1997]
[JORDAN-1998] [MELNIKOV-2000b]. The iterative refinement method (IRM) [GERKIN-1997]
has been widely used as it can be easily implemented. However, this method cannot find the
optimal position of the approximating vertices. In paper [JORDAN-1998], a digital polygon
approximation was presented, taking the intrinsic image grid quantisation into consideration.
Recently, an R-D optimised vertex selection method [MELNIKOV-2000b] has been proposed.

However, this method has high computational complexity.

In our research, a new vertex selection scheme is proposed to approximate an object contour
progressively. During approximation, the vertices are classified into several layers according to
the selected error bands. During our experiments, 4 layers are used for QCIF sequences. Layer 0,
1, 2, and 3 have the corresponding desired error band d ., =4, d 0 =2, dypax =1, dpax =0
respectively. These selections are based on the research results in [JORDAN-1998], which show
that:

° It does not seem useful to encode more than 4 layers;

° Lossy shape coding should be limited to small distortions for video coding,

The detailed vertex-selection algorithm can be summarised as follows:

° Curvature scale space (CSS) image [MOKHT-1992] has been exploited during vertex
selection for layer 0. The algorithm for CSS image calculation will be discussed in
Section 5.2.3.1,

Figure 5.2 shows a video object contour and its traced CSS image. It is found that the -
traced CSS image carries the most important feature of object contours and can detect
these salient features easily. The vertices of layer 0 should include the salient points of
the object contour, which can feature contour efficiently. These vertices should be first
encoded and decoded, as they are very important for shape refrieving and matching.

However, for contours with small curvature, the method based on curvature cannot
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guarantee that the contour approximation satisfies the predefined error band. Therefore,

the IRM method is used after curvature-based vertex selection is employed.

® For other refinement layers, IRM, together with a novel merging scheme, has been
exploited. Each approximating polygon edge of the coarser layers is recursively split by
introducing a new vertex at the contour point with the largest distance, until the desired

accuracy o <d,, is reached. The intrinsic image grid quantisation is taken into

account during the approximation.

(c) (d) (e)
Figure 5.2 — The correspondence between (b) the traced CSS image and (c) the salient features

(o =80) for original contour (a). (d) and (e) are the salient features for o > 40 and ¢ >30.

In order to reduce the approximation vertices and encoding bit-rate, a new merging algorithm is

proposed and summarized as follows:

i-l
1 Suppose, at layer i e {1,2,3}, the contour has been divided into 3 N ; segments. Along
k=0

every segment, if the vertex number of layer i is 2 or more, these vertices will be
evaluated. If the vertex is removed and the polygon approximation still satisfies the

error condition, remove it. Otherwise, keep it.

105




Chapter 5. Scalable object modelling and model compression

2 If dp,x =0, and, for every segment p, p, , the vertex number of layer i is n; 22,
arrange these vertices along the contour in array pt[], including two terminals. Then:
For (k=0; k<nj —1;ki+) {
For (kk= pt[k]; Kk< pt[k +1]; kk++) {
If (kk == pt[k])

If we can find m; <n; —k points to approximate segment kk, p, ,

recode the points and number;
Else

If we can find m; <n; —k—1 points to approximate segment

kk, p, , recode the point positions and number;

}

If (no such point sets are found) {No merge is needed;}

Else {Replace the vertices of layer i with the point set with the smallest number.}

Figure 5.3 illustrates an example for the lossless approximation, where (a) is achieved by the
methods published in [GERKIN-1997] and [JORDAN-1998] (both achieve the same results); and
{(b) is achieved by the proposed method. For the approximation of the contour segment between
X1 and X2, four points are required by using the method [GERKIN-1997] and [JORDAN-
1998]. While using our proposed method, only one point is chosen. More experimental results in
Section 5.4 show that our proposed method requires fewer vertices to approximate the object

contour, especially for (near-) lossless approximation.

(a) (b)
Figure 5.3 — Comparison of different lossless approximation methods. (a) Approximation result

using IRM method only [GERKIN-1997]; (b) Approximation result using our proposed method
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5.2.2 Scalable intra-shape coding

Figure 5.4 shows the proposed scalable intra-shape coding scheme. For scalable vertex-based
shape coding, there are two kinds of information to be encoded: confour configuration and
contour location. Contour configuration is represented by an ordered set of vertices that can be
used by the decoder to correctly produce the ordered list of vertices. The contour location is
represented by the coordinates (x, y) of the vertices. In the proposed intra-shape coding scheme,

the scalable vertex encoding consists of:

° The encoding of the vertices of layer 0;
. The encoding of vertex connectivity of the refinement layers;

* The position encoding of the refinement layers;

=t Layer( encoder e
Y. . i ‘ Layered
Obgect Progressive wi  Layer ] encoder > Bit bit stream
——— p— P
Contour shape 7 Assembler *
representation o) Layer2encoder >
Yy
*| Layer 3 encoder <

Figure 5.4 — Scheme illustration of scalable intra~-shape coding scheme

5.2.2.1 Encoding of layer 0

As there are no coarser approximation layers for layer 0, the corresponding vertices have to be

encoded directly. The encoding of layer O consists of two parts:

o The encoding of the initial vertex;

) The encoding of other vertices;

In our proposed method, a vertex-reordering step is conducted before the initial vertex encoding.

As we know, the relative distance between the initial vertex v, and the last vertex vy, does not

need to be coded. In the object-adaptive vertex-based shape-encoding (OAVE) scheme described
in [CONNELL-1997], the bit assignment during encoding is dynamically determined by the
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maximum relative distance. Therefore, the reordering of vertices can reduce the number of

encoded bits.

After the initial vertex is decided, two prediction models have been proposed to encode its
position:
° Relative to the origin of the video object plane (VOP) boundary box;

° Relative to the origins of other contours;

During experiments, we found that, if the number of contours of a VOP is high, (b) is more
efficient than (a).

In the proposed scheme, two encoding methods have been used to encode the non-initial vertices:

° OAVE encoding scheme in [CONNELL-1997];

1t provides a compact representation when the vertices are closely spaced. Experimental
results in [CHUNG-2000] show that OAVE algorithm, combined with adaptive
arithmetic coding for encoding a composite relative address, shows good coding
performance. However, the OAVE algorithm may be not efficient when the vertices are
widely spaced, which usually occurs for the coarser approximating layers [CONNELL-
1997].

® Absolute addressing [CHO-1996];
It can provide a compact representation when an object’s vertices are widely spaced (as
in a large object approximated by few vertices). It is inefficient when the vertices are
closely spaced.
For above two methods, the method generating shorter bit stream is selected. During the encoding
of the vertices of layer 0, the coding model selection information is also included in the encoded
bit stream and transmitted to the decoder.

5.2.2.2 Vertex-connectivity encoding of refinement layers

For scalable shape coding, the connectivity and the number of child vertices along the coarser

polygon edges should be encoded and transmitted to the decoder. In our research, a 2-D symbol
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(4, B) is defined to indicate the positions, where new vertices will be added. 4 is to define the
number of edges (or vertices) before a vertex should be added. B is defined as the number of

vertices to be added along this approximation edge. For each approximation layer (except layer

0), 2-D symbols are formed and encoding using variable-length coder (VLC).

The following example illustrates the symbol construction. Assume that we plan to encode the
vertices along the object contour in Figure 5.5. First, 10 vertices in layer 0 are encoded and the
vertex S is chosen as the starting point. For layer 1 and layer 2, the 2-D reference symbols are

formed as follows:

(4!1)’ (lvl)v (2)1)’ (292) (Layer 1)
(L,1), 3,1), 3,4), (2,1), (1,1), (1.2), (2,1), 2,2) (Layer 2)
MW Levelo
s @  Levell
@ Level 2

Figure 5.5 — Illustration of vertex-connectivity coding
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(a) (b)
Figure 5.6 — Statistical distribution of (A, B) pairs for (a) Layers 1, 2, and (b) Layer 3

During encoding of these symbols, a variable length coder (VLC) has been used. As the number
of vertices for every layer has been included in the layer header, the end-of-layer (EOL)

information is not needed.
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Fifty video objects from QCIF sequences have been used to study the statistics of symbols, which
are shown in Figure 5.6. It is found that layers 1 and layer 2 have similar statistics, but are
different from these of layer 3. Therefore, two VLC tables are designed. From the data shown in
Figure 5.6, it is also found that, for layer 1 and layer 2, B = 1 for almost 75% of (4, B) symbols;
and for layer 3, 4 = 1 for almost 75% of (4, B) symbols. During vertex position encoding, this has

been used to improve the encoding efficiency.
5.2.2.3 Vertex-position encoding of refinement layers

For the vertex position encoding of refinement layers, an improved OAVE encoding algorithm in
{CONNELI-1997] has been proposed. In this algorithm, the information from the already
encoded coarser layers and pre-defined error band of the current layer is exploited for high

encoding efficiency. The encoding process of the current layer includes:

o Determine and encode the dynamic range indicators for x and y components of the

current layer;
® Encode the octant numbers of the vertices;

° Encode the major and minor components;

Determine and encode the dynamic range indicators for x and y components

The ability to adapt the vertex representation for all of an object’s vertices is provided by
indicating the dynamic range of the relative locations [CONNELL-1997]. The dynamic range of
the relative locations of the object’s vertices of current layer can be determined and indicated in

the compressed bitstream by:

J Calculating the relative locations of the vertices R; =V; -V, 4 for i=1-+,N -1

(V ={y,Vy,-+,Vy_, |} represents the ordered set of N vertex locations approximating

the object contour), after selecting the initial vertex;

] Determining the x_ max_magnifure and y _max_ magniture , the maximum absolute
values of the x and y components of the relative location R;. In the proposed method,

only the segments containing the newly inserted vertices are used during the

determination.
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® Selecting and encoding indicators indicator, and indicator, based on the Table 1 in

[CONNELL-1997]. The selected indicators are then encoded using a 3-bit FLC.

Encode the octant numbers

In the proposed method, the determinant of octants of current layer is different from that in
[CONNELL-1997]. Figure 5.7 shows the determination of octant number using: (a) the method in
[CONNELL-1997]; and (b) the proposed method for Case 7 that only one vertex is allocated

between the segment X, X, . Figure 5.7 (c) shows the octant number determination for Case 2

that two or more vertices are allocated between the segment X, X, . The main difference of our

proposed method with the method in [CONNELL-1997] is the defined area for octant 0, 3, 4, and

7. The proposed method can reduce the dynamic range of x and/or y components, which
depends on the octant number. For example, in Figure 5.7 (a), the dynamic range of y component

for octant 0 is y_ max_magniture . In Figure 5.7 (b), its dynamic range of y component is

(d, —d 2)* V2 , which is commonly smaller than y _max_magniture . The same conclusion can

be drawn for the case in Figure 5.7 (c).

According to the vertex number, » ;> of current layer along the approximation edge, two octant

determination methods are proposed:

® Case I' If n; =1, its octant is decided from Figure 5.7 (b). In Figure 5.7 (b), X; and

X3 belong to the coarser layers. Now, if one point ¥, belongs to current layer, it must

be located in the regions between /jp and /j; or between 7, and ;.

. Case 2:If n; = 2, their octants are decided by Figure 5.7 (). These vertices are located

in the region between J;; and J5; in Figure 5.7 (¢). For example, in Figure 5.6 (c), the

octant of ¥, is based on the relative position between XY, and X, X, . The octant of
Y, is based on the relative position between X,¥, and X, X, , instead of the relative

position between Y, ¥, and X, X, .

The regions corresponding to octant from 0 to 7 are separated by /; and /, , as indicated in Figure
5.7 (b) and (c) from R, to R, respectively. After deciding the octants, they are encoded by using
conditional differential chain coding (CDCC). The differential octant is obtained by the difference
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between neighbouring octant values. For example, in Figure 5.7 (b), the differential octant of ¥,
is decided by the octant of ¥, and the octant of X, . In Figure 5.7 (c), the differential octant of ¥,

is decided by the octant of ¥, and the octant of ¥y, .

()

()
Figure 5.7 — Octant number determination: (a) using the method in [CONNELL-1997]; (b) using

the proposed method for Case I; (c) using the proposed method for Case 2
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Encode the major and minor component

The vertex number along the approximation edges also determines the encoding methods for the

vertex position.

(b)

Figure 5.8 — Encoding vertex position for refinement layers for (a): Case I with one vertex

locating along the segment X X, ; (b): Case 2 with two or more vertices locating along the

segment X X,

° Case I: If n j =land the octant of this vertex is 0, 3, 4, or 7, its x component is
encoded by using indicator, of the current layer. Its y component is decided by value

d, in Figure 5.8 (a) and is encoded by VLC coder. If its octant is 1, 2, 5, or 6, such as
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Z, in Figure 5.8 (), its y component is decided by the distance d, =|Z,Z |, which is .
no larger than indicator, of current layer, and encoded using VLC codec. Its x
component is encoded using I-logz(min{indicatorx,I_lug:,(x1 +1)}})] bits, where x; can

be deduced from value d =|Z,Zo| and the information from /; and X X, .

Case 2:If n; 22, as shown in Figure 5.8 (b), the first vertex is encoded by using the
same method as described above for Case I, except that different VLC table is used.
For other vertices, the method in [CONNELL-1997] is used except that the error band
is also used to decide the number of bits. For example, for ¥, in Figure 5.8 (b), its x
component is encoded using [log, (indicator, )| bits. Its y can be deduced from d,

(encoded using variable length coder), and 7. For ¥, in Figure 5.8 (b), its x
component can be deduced from the x component of ¥, and the line ?,i’: (encoded

using [log, (indicator, )] bits). Its y component is deduced from d, (encoded using

variable length coder), and [, .

For every refinement layer, two VLC tables are designed for the above two cases. For Case I, the
discrete set of d is {2,3,4,5,6}, {1,2,3}, {O,l} for layers 1, 2, 3, respectively. For Case 2, the
discrete set of d is {0,1,2,3,4,5,6} i {0,1,2,3}, {O,l} for layers 1, 2, 3, respectively. For layers 1 and
2, about 75% of total vertices satisfy Case I, the value d can be encoded using 1-2 bits. For layer
3, the value d can also be encoded using 1 bit as the discrete set of d is {0,1}. Therefore, the

compression performance can be improved especially for (near-) lossless shape coding. More
experimental results are presented in Section 5.4.

5.2.3 Scalable predictive shape coding

The coding efficiency achieved by the intra-shape coding scheme cannot satisfy the requirement
of low bitrate video coding, even though current state-of-the-art compression ratio is high. Since a
contour sequence has very high correlation in the temporal domain, as shown in Figure 5.9 for
Foreman sequence, motion estimation and compensation can be used to achieve further
compression. The contour in the current frame can be predicted from the contour obtained in the
previous frame. Only the contour segment that cannot be predicted from previous frame must be
encoded by using the intra-shape coding technique. Compared with intra-shape coding, this

predictive coding method can reduce the bit rate of the shape coding drastically.
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Figure 5.9 — Example of object contour sequence (12 consecutive frames from the Foreman

Sequence)

Several motion compensated contour coding schemes have been proposed [CHO-1999] [GU-
1995] [KIM-2000]. In these contour motion estimation schemes, the object contour is assumed to
undergo a translational motion. A global motion vector is searched according to the number of
matched contour points between two contours. The whole contour is segmented into global
motion success segments and global motion failure segments, as shown in Figure 5.10. The global
motion success segment is the segment that can be correctly predicted by the global motion
vector. Otherwise, it is a global motion failure segment. The global motion failure segment is
encoded by chain coding method. Only the segment length of the global motion success segment
is required for the transmission. It can be reconstructed from the contour in the previous frame
and the global motion vector. In [CHO-1999] and [KIM-2000], a second stage motion, local
motion vectors are searched for each global motion failure segment. The global motion failure
segment is further split into local motion success and local motion failure segments. The local

motion success segment can be represented by its length and the local motion vector.

The main assumption of the above contour motion estimation/compensation schemes is that the
global motion of the object contour is translational. When there is more complex motion such as

zoom and/or rotation, the contour cannot be well compensated. In Figure 5.11, the object contours
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in two neighbouring frames are overlapped. We can find that different motion patterns exit for

different contour segments. It is difficult to use one motion model to describe them.

V2
V4 V3 Vs
Vs Vi
\'A Vi Vi Vi

(a) Lossless motion estimation; (b) Lossy motion estimation
Figure 5.10 — Matched and mismatched segments, and matched (or mismatched) start-end points
after motion estimation by traversing in a counter-clockwise direction [CHO-1999].

(b}
Figure 5.11 — Hlustration of contour motion pattern for different segments: (a) and (b) are

contours in different frames. (¢) shows the overlapping of (a) and (b)

In [LU-2002], an affine global motion compensation scheme is investigated. The following six-

parameter affine motion model is used as a global motion model.

{J?=a;_,x+a._y+a3

L (5.1)
y=a4x+a5y+06

where x and y are the coordinates of contour points of the current frame. x and y are the

coordinates of contour points in the previous frame.

The vector [a,,a,,a;3,a,4,a5,a4] is estimated according to two available contours. First, the

corner points of each contour are detected according to their curvature values. Then, the comer
points are matched by a comer matching process. The motion vectors are calculated from the

matched corner pairs. The affine parameters are estimated by a Least Median Square (LMS)
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algorithm, and then are encoded. One of the problems with this method is the coding of affine
parameters. As the affine parameters are floating point, 10-12 bits are required to represent each
parameter. Therefore, for most sequences, compression ratios are not high. The other problem is
the contour comer matching. Sometimes, it cannot be matched accurately due to the shape

distortion. The parameter used to represent the shape feature is not robust enough. Furthermore,
this method cannot provide scalable shape coding.

In our research, a novel layer-adaptive scalable predictive coding scheme is proposed, which can
achieve higher compression efficiency than state-of-the-art shape coding methods due to the use
of temporal prediction. In order to achieve scalable predictive coding, it is necessary to represent
and estimate the contour motion hierarchically. In our proposed scheme, the contour motions in
level i are first estimated. They are predicted from the MVs of the previously transmitted levels
and/or the encoded MV of the current level. Contour matching in CSS image domain is applied
to find the correspondence of two contours during contour motion estimation, which can achieve
more accurate motion estimation of object contours. Figure 5.12 shows the diagram of scalable
predictive shape coding scheme. The novelties of this method are twofold:

Layer0 Layer0
L MV coding and intra-
Object | ME Llaverl) or M-fuiled [ Layer 1
Contour Lowd segrments = Bit
Laylx -
11 ~ =| Assembler
1 Layered Intra-coding ) Layer 3

'
2

Layer 0 vextices

| Approximating
% Vertex Buffer/
Layer 1 vertices
Vertex status
Layer 2 vertices | adaptaton |

Figure 5.12 — Diagram of scalable predictive shape coding

First, we propose an efficient contour motion estimation scheme, which is based on the

curvature information of an object contour and is used to predict the motion vectors of

vertices in the coarser level;
Second, a scalable encoding scheme is proposed, in which the motion of each contour is

estimated hierarchically. A multi-model encoding scheme is included to improve the

compression efficiency.
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The proposed scheme consists of two steps: contour motion estimation and scalable predictive
shape coding, which will be discussed in detail in the following sections.

5.2.3.1 Contour motion estimation

Instead of using the comer matching method for contour motion estimation described in [LU-
2002], in our proposed scheme, CSS images and curvature information are used in contour
matching for contour motion estimation. CSS images are currently used for shape indexing and

retrieving, and have been selected as shape descriptors for the MPEG-7 standard [MPEG7-2002].

3.2.3.1.1 CSS image calculation

The CSS image is computed by first convolving a path-based parametric representation of the
contour with a Gaussian function, as the standard deviation of the Gaussian varies from a small to
a large value. Next, curvature is computed on each smoothed contour. As a result, curvature zero-
crossing points and curvature extremes can be recovered and mapped to the CSS image in which
the horizontal axis represents the arc length parameter on the original contour, and the vertical
axis represents the standard deviation of the Gaussian filter. The CSS image has the properties

that it is invariant under rotation, uniform scaling, and translation of the contour.

Given a planar curve

L= {(x(w) y(w)) we o, 1} 52
where w is the normalized arc length parameter, and its evolved version is defined by:

Ty ={(X(,0),Y(u,0)) uelo, 1]} (5.3)
where

X (u, 0) = x(u) ® g(u, o‘) ' 5.4
Y(u,0)=y(u)® glu,0)

g(u, o) denotes a Gaussian of width o defined by:

" glu,0)= 1 -1’

5.5
o .

The curvature of ', can be calculated by:

x‘(u a’)= Xuyuu = quYu

(5.6)
(2 + 52"
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(b

(d)

Figure 5.13 — Two object contours from Motr_dhtr sequence, their extremes and zero crossing of
contour curvature image with the scale o . (a) Original object contours and their motion; (b) The
extremes curve of curvature across the scale o ; (¢) is the length of extremes curve after tracking

process; (d) is the zero crossing of curvature across the scale o .
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(b)

(d

Figure 5.14 — Two object contours from Foreman sequence, their extremes and zero crossing of

contour curvature image with the scale o . (a) Original object contours and their motion; (b) The
extremes curve of curvature across the scale o ; (c) is the length of extremes curve after tracking

process; (d) is the zero crossing of curvature across the scale o .
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Using equation.(5.6), the main feature points can be detected at any scale. By finding the local
curvature extremes, we are able to identify where sharp changes in the contour direction occur.
The curvature extremes of lower resolutions also exist in the higher resolutions, and they have

similar positions. In our research, all of the curvature extremes are defined as the Curvature Scale
Space (CSS) image of T'.

Figure 5.13 shows the two object contours in the Motr_dhtr sequence, their extremes and zero
crossing of contour curvature image with the scale o . It can be found that the extremes and zero

crossing of object contour curvature can identify important geometric properties of contour and
two object contours have large similarity in CSS images.

Figure 5.14 shows the object contours and their CSS images for Foreman sequence. The same
conclusions can be achieved. Therefore, in the proposed algorithm, the extremes of the contour

curvature will be used to find the corresponding features of two object contours.

3.23.1.2 Contour matching of CSS image

Figure 5.13 and Figure 5.14 show the CSS images of object contours of two consecutive frames.
It can be found that the matching of two object contours in CSS images is much simpler than
matching object contour directly. As the two contours have the same direction (counter-clockwise
in our experiments), the matching of two CSS images just tries to find the optimal horizontal shift
of the maxima in one of the CSS images that would yield the best possible overlap with the
maxima of the other CSS image. The basic idea behind the contour matching based on CSS image
is to obtain a coarse-level match using the structural features of the input curves. Such a match
can be found quickly and reliably since at the high levels of CSS image, there are relatively few
features to be matched. The actual features used for matching are the maxima of the curvature
local extremes contours since they are the most significant points of these contours: the CSS
coordinates of a maximum convey information on both the location and the scale of the
corresponding contour whereas the body of the contour is, in general, similar in shape to those of

other contours. Furthermore, the maxima are isolated point features and therefore solving the
feature corresponding problems is relatively simple.

So the task of the matching algorithm is to find the correct correspondence between two sets of
maxima: one from each CSS image. The allowed transformation from one set to the other is mere
horizontal translation. The translation parameter is computed when the first image curve CSS
maximum is mapped to the first model curve CSS maximum and used to map each of the

remaining image curve CSS maxima to the model curve CSS. The corresponding model curve
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CSS maximum shoutld then be the closest model curve CSS maximum. Many candidatures may
have to be considered since the correspondence between the first pair of maxima can be made in
possibly many ways. This matching problem can be solved using a best-first matching strategy
which will gradually expand a number of candidatures matched in parallel until the lowest-cost
complete match is found. The contour-matching algorithm [MOKHT-2003] (in Chapter 2) has

been employed to achieve contour matching in CSS image. The contour-matching algorithm can
be summarised as follows:

1. Calculate the CSS images of object contours in the current frame and previous frame,
which are named as image CSS and model CSS respectively. Normalise these coordinates
so that the horizontal coordinate u varies in the range [0, 1]. Segment the object contours
into several segments by using CSS images.

2. Create a number of nodes corresponding to the possible match of the contour segment of
current frame with the highest-scale maximum of the image CSS and the contour
segments of previous frame, in which the maximum has a o coordinate close (within

90%) to that of the highest image CSS maximum. Initialise the cost of each node to zero.

3. For each node created in the prévious step, compute a CSS shift parameter o using
u,, =t; +a, where u,, is the horizontal coordinate of the model CSS maximum and u;

is the horizontal coordinate of the image curve CSS maximum.

4. Create two lists for each node created in step 2. The first list will contain the image CSS
maxima matched within that node at any point during program execution and the second
list will contain the corresponding mode CSS maxima. Initialise the first list of each node
to contain the highest-scale image CSS maximum. Initialise the second list of each node

to contain the corresponding mode CSS maximum determined in step 2.

S. Expand each node created in step 2 one step using the procedure described in the next
step.

6. To expand the node, select the highest-scale, image CSS maximum (which is not in its
first list) and apply that node’s CSS shift parameter computed in step 3 to map that
maximum to the model CSS image. Locate the nearest model Curve CSS maximum
(which is no in the node’s second list). The cost of match is defined as the straight line

distance in the model CSS image between the two maxima. If there are more image CSS
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maxima left, define cost of match as the height of the highest model curve CSS maximum
not in the node’s second lost. Likewise, if there are no more model CSS maxima left,
define cost of match as the height of the selected image CSS maximum. Add the match
cost to the node cost. Update the two lists associated with the node.

7. Select the lowest-cost node. If there are no more mode or image CSS maxima that remain
unmatched within that node, then return that node as the lowest-cost node. Otherwise go
to step 6 and expand the lowest-cost node.

Please refer to [MOKHT-2003] for the detailed description of this algorithm. Once the nodes’
correspondence are decided, the contour motion can be represented and estimated by the motion
of feature points of the object contour with salient features. In fact, based on these motion vectors,
the global motion parameters can be estimated after selecting the proper motion model. If a
translation model is used, this method is the same as that in [KIM-2000]. If an affine motion
model is used, the proposed method is the same as that in [LU-2002]. The complexity of our

proposed method is comparable with the contour motion estimation method in [LU-2002].
5.2.3.2 Scalable predictive shape coding

The proposed scalable predictive shape-coding scheme used different encoding schemes for different
approximation levels. Figure 5.12 shows the diagram of scalable predictive shape coding scheme.
For each level except the finest one, the motion vectors of vertices are estimated and the contour
of the current frame is predicted by motion compensation. For the motion failure segments, where
the approximation error band is larger than the predefined threshold, new vertices are inserted to
make it satisfy the error band. Their coordinates are intracoded and are transmitted to the decoder.
As an adaptive update scheme is proposed and used in the codec, the order of the maintained and

rejected vertices need not be coded and transmitted to the decoder. This is different from the
method in [CONNELL-1997].

The predictive scalable shape-coding algorithm can be described as follows:

For the vertices of level 0 in the previous frame, which have the maximal curvature, their
corresponding point in the CSS of current frame is estimated based on the contour matching
algorithm in Section 5.2.3.1. For other vertices of level 0, which cannot be selected using
curvature information in CSS image, they try to make the approximated contour locate in
the pre-defined error band and their motion vectors are estimated trying to minimise the

approximation error. This process is illustrated in Figure 5.15. Image (a) shows the object
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contour of the previous frame, in which three vertices belonging to level 0 are indicated as
A, B, and C. The vertex A and B locate on the high curvature position and their
corresponding positions are estimated, indicated by A" and B" as shown in image (b). In

order to find the corresponding vertex of C , the following two steps are conducted:

1. First, the search region S is decided along the contour of the current frame as
shown in Figure 5.15 (c). This is mainly to reduce the number of possible search

positions and computational complexity;

2]

Then, in this region, find the corresponding position C” of vertex C, which has

the minimal prediction error of the contour segment between A" and B’, as

shown in image (d);

(©) (d)

Figure 5.15 — Motion estimation of the vertex without locating on high curvature position.

(a) Object contour of the previous frame: (b) Object contour of current frame; (c) Search
region along the contour of current frame for the vertex C in the previous frame (indicated
by green colour); (d) the final estimated position €’ (indicated by green ‘x’), which tries to

minimise the contour approximation error.

After estimating the motion vectors, these motion vectors are differentially encoded by
using a variable length-coding scheme (VLC). In our experiments, adaptive arithmetic

coder is used [WITTEN-1987].
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For the motion failure segments, where the contour approximation cannot satisfy the
predefined error band: new vertices are inserted based on the CSS image and the maximal
error distance. The coordinates of these vertices are intra-coded by using the method

described in Section 5.2.2, and transmitted to the decoder after the motion vectors.

If the vertices in levels 1 and 2 in the previous frame are located on the salient points with
high curvature, their motion vectors are estimated by using the method described in Section
5.2.3.1, Otherwise, the motion vectors are estimated by using the method illustrated in

Figure 5.15, which tries to minimise the approximation error of object contour.

During motion vectors encoding, the motion vectors are first predicted from the MVs of the
coarser levels and/or the encoded MVs of the current level, as shown in Figure 5.16. In this
Figure, vertices A, B, C and D belong to the coarser levels. Vertex 1, 2, 3, and 4 belong to

the current level. Their MVs are estimated as follows:

e The MV of vertex 1 is estimated from the MVs of vertex A and B
e The MV of vertex 2 is estimated from the MVs of vertex B and C;
e The MV of vertex 3 is estimated from the MVs of vertex 2 and C;

e The MV of vertex 4 is estimated from the MVs of vertex C and D.

Figure 5.16 — illustration on predicting motion vectors from the coarser levels and/or

current levels.

The prediction error of MV is encoded using a VLC scheme. However, some video objects
have very complicated shapes, requiring more vertices in levels 1 and 2 to represent them.
Here, the MV estimation and differential coding method is not efficient enough as more

vertices are needed to represent them, which was also discussed in [HOTT-1989].
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Therefore, in our proposed scheme, the multi-model selection method is used in these two
levels, which includes two coding methods:

e MV estimation/differential coding method;
* Scalable intra-shape coding method;

The method, which generates the shorter bitstream, is selected and encoded, together with
the encoded bitstream,

For level 3, as there are more approximation vertices, the size of the list update information
is significant. Furthermore, it is difficult to estimate the correspondence of two contour
segments based on the curvature information, which provides a lossless approximation of
the contour. The performance of the MC-based method is not satisfactory [HOTT-1989].
Therefore, in our proposed method, the scalable intra-encoding scheme described in Section
5.2.2 is used. That is, the vertices are first selected progressively to satisfy the error band
condition, Then, they are intra-encoded by using the method in Section 5.2.2. Therefore, for
the vertices of level 3, no motion estimation is conducted, as the motion estimation of
vertices is less efficient for shape coding.

Intensive experiments have been conducted to test the proposed scalable predictive shape-coding
scheme, which are illustrated in section 5.4 in detail.

5.3 Proposal for scalable mesh model design and coding
5.3.1 Scalable mesh model design

Model design is vital for the performance of 2-I scalable model-based video coding. The model
should represent the movement of the object precisely. Furthermore, in order to overcome the
aperture problem commonly encountered during motion estimation, the node points of model
should be allocated on the positions that contain sufficient grey-level variation, such as comners.
At the same time, based on the results in [NAKAY A-1994], the area of the patches that contain the
inotion discontinuities should be as small as possible. In this way, the number of pixels with

erroneous motion estimation can be reduced. The best way to achieve this is to let the edge of the
mesh triangles conform to the object boundary.

In our proposed algorithm, the physical characters (such as edge and texture) and motion
character of the object surface have been taken into account, similar to the method in [IZQUIER-
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1999]. Before 2-D model construction, a set of feature points and edge lines from the intensity

image are first extracted. Then an initial constrained 2-D mesh can be constructed to reduce the
triangular patch area with motion discontinuities. The difference from the proposed method to
those, such as [ALTUNB-1997], [BEEK-1999] and [CELASUM-2000]; is that object surface

characteristics are employed as the mesh constraints in order to achieve accurate motion
modeling.

Before scalable mesh model design, we assume that object shape has been approximated and

transmitted to the decoder progressively and losslessly by using the methods in Section 5.3. The
proposed algorithm can be described as follows:

L.

The object is analysed and segmented into texture and motion homogeneous patches.

Certain objects in the video sequence commonly undergo both rigid and non-rigid motion.
Therefore, the interior node should be allocated to represent the movement precisely,
especially for non-rigid motion. In order to achieve this, the object is analysed and
interior edges are first detected since the errors during warping are more likely to occur at
the interior edges due to the non-rigid object motion. At the same time, in order to

estimate the motion of object precisely, the node should be located on the features with
high texture content [SHI-1994].

The nodes of the coarsest layer (layer 0) are allocated on the intersection points and the

interior edge lines, trying to approximate the patch contours achieved in section 1.

To generate linear approximations for each interior edge, the method in [DUNHAM-
1986] is applied. That is, a symmetric narrow band & along the curve of concern is first
defined, Then the shortest polygonal path lying in the strip defined by the band is then
chosen as linear approximation for the curve. To avoid the creation of very small triangles
during the generation of the initial mesh, sides of the polygonal path whose length does
not exceed a predefined threshold are removed. The resulting lines are designed to form
the constrained mesh vertices of the coarsest layer, Please note that, some of the nodes in
this layer may be located on the object contour because the interior texture information is

not considered during the object contour approximation. But it is far from the control
points in layer 0 of object contour.
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3. More nodes are allocated on the object interior to obtain meshes with nodes regularly
distributed over the object area.

First, the video object is split into rectangular blocks of moderate size. For each block that
does not intersect an edge and the layer 0 nodes (both object contour and interior), the
point that is most clearly distinguished from its neighbour is also considered as a
candidature for the mesh nodes. SUSAN comer detector [SMITH-1997] is used to detect

the comer and estimate the gradient. By adjusting the size of rectangular blocks, different
approximation layers can be generated,

In our research, a three-level scalable object model for each object is used. The number of points
in every level is decided by the size of object, texture and motion of the frame. On completion of
node point. allocation, constrained Delaunay triangulation algorithm is used to build the mesh
structure of the object model [BERG-1997]. As the node points in level 0 are located on the patch

contours, they are considered as the constraints to guarantee the edges of mesh triangles conform
to the contour of motion discontinuity.

5.3.2 Model evaluation algorithm

In order to evaluate the performance of the designed model, a hierarchical motion estimation
scheme has been proposed to estimate the motion vectors of node points. The PSNR after warping

is calculated and used as the criterion of model performance, The evaluation algorithm includes
the following steps:

1 Foreword / backward motion estimation of video object

In order to estimate the motion of a video object, a number of points are allocated in the
interior of object. These points may be different from those used to represent object

model and have good features for tracking [SHI-1994]. Then, both forward and backward
motion vectors of these points between frame I(%,f—1) and frame I(%,¢) are estimated

vsing Shi-Tomasi feature tracking algorithm in [SHI-1994]. That is, the forward motion

vector of the i th point location ¥; in frame ¢—1, moves to location ¥; in frame ¢. Then

the backward motion vector at the location ¥; in frame ¢ maps back to ¥; in frame ¢—1.

2 Reliability evaluation
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The motion “reliability” is estimated based on both forward and background motion

vectors. The “reliability” is evaluated by the Equation (3.3) in Chapter 3. The smaller the
difference between ¥; and V; , the more reliable the motion vector of ith node. The

nodes whose reliability is smaller than a threshold (0.3 is chosen in our experiments) are

not considered during model vertices prediction.
3 MV prediction of node points of scalable object model

After estimating the motion vectors of these peints, the motion vectors of node points
representing the object model are predicted from their m nearest surrounding motion
vectors. m 1is chosen as 6 in our experiments. The weighted least squares (WLS)
estimation in [ROUSS-1987] is used to determine the affine parameters of motion for the

control points. During estimation, each motion vector is weighed according to its
“reliability”.

4 MYV refinement by hexagonal matching algorithm

As the estimated MV using feature tracking algorithm has high precision, the MVs are
then refined to 1/4-pixel resolution with lower warping error. During refinement,
hexagonal matching algorithm in [NAKAYA-1994] is exploited which is efficient for

mesh-based motion estimation and can also keep the mesh structure during estimation.

Some results are listed in Section 5.4.1 for the performance evaluation of the designed scalable
object model,

5.3.3 Scalable mesh model compression

Scalable mesh model compression includes both intra-coding (coding of node position) and inter-
coding (coding of node motion vectors). In this section, our research will just focus on intra-

coding. Scalable coding of node motion vectors will be discussed in detail in Chapter 7 of this
N
thesis,

Before model compression, we assume that thc mesh topology remains fixed during mesh
tracking. The mesh can be consiructed using Delaunay triangulation so that the mesh triangular
topology need not be coded. The Delaunay triangulation [BERG-1997] is used as a pre-agreed

triangulation method, such that the mesh can be reconstructed at the receiver,
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The model compression method in [BEEK-1999] has been extended to achieve scalable mesh
model compression, which consists of three steps:

1

Unique ordering of the node points;

Compression of node-point locations assumes a unique ordering of the node points. This
ordering is computed on the original finest level and is defined as follows. First, the top
left node is defined to be the first in the node ordering. The node is considered as top left
with minimum x + y , assuming that the origin of the local coordinate system is at the top

left. If there is more than one node with the same value of x + ¥, use the y value to break

ties. Other interior node points are ordered using a greedy nearest neighbour strategy,
starting from the first node. The nearest neighbour strategy identifies the node that has not

already been ordered and has minimum|x ~x, ;| + |y y,|» where (x,,, ) represents
the coordinates of the previously ordered node. If necessary, use the y and x values to

break ties for the case when there is more than one such node. This continues until the
entire set of node points is ordered. The difference of the ordering process from that in

[BEEK—1999] is that the points along the object boundary are not included during the
ordering process.

Encoding of base-layer mesh geometry

Each node point location of base layer is coded differentially using the coordinates of the
previously processed node as predictors. That is, the difference between the x-coordinates
of the present node and the previous node is coded using a variable-length coder, as is the
difference between the y-coordinates of the present node and the previous node. The total
number of node points of base-layer is encodéd before cloding the actual locations. Thus it
is able to reconstruct the mesh of this layer, The decoder finally applies constrained
Delaunay triangulation to obtain the topology of the base layer mesh.

Encoding of enhancement-layer mesh geometry

The basic predictive schemes discussed above are also used to code the locations and
motion vectors of nodes in the enhancement layers. However, coding of the detail

information at successively finer levels is performed with respect to already encoded
information of the current or coarser levels.
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In our study, a scalable method is used to encode the ordering information in such a way that it

can be reconstructed layer by layer. The encoding process for ordering information is illustrated in
Figure 5.17.

O 1ieyer i
n A layer 2

O layer 3

(a) (b)
Figure 5.17 — Illustration of scalable model compression. (a) Ordering of model vertices; (b) The

layer representation of the object model.

In Figure 5.17 (a), the ordering of node points of partial object model is illustrated. First, the
boundary nodes are visited in a counter clockwise direction. Then the interior nodes are visited
according to proximity, i.e., the next node is always the nearest node that has not been visited. In
Figure 5.17 (b), two layers are used for object boundary and three layers for object interior. The
list of layer labels of nodes in the predefined order illustrated in (a) is as follows: 112112121
232132 1. This string can be encoded directly by using variable length coding although it is not

a scalable coding. In order to achieve scalable coding, the string is arranged as:

. First Layer: PUISOE IS0 Sa 805 1S QR OF 1808 0}
o Second Layer: 1 1 1 | Ur 1
° Third Layer: 1 1

(* no need to transmit the third layer as the number of layers has been transmitted to the decoder
as header information)

To encode the above strings, Run-length coding (RLC) is used to represent the above string as (a
(b): a is the number of 1; b is the number of 0):

First Layer: 2 (1) 2(1) 1(1) 1(D)
Second Layer: 0(2) 1(2) 1(0)
Third Layer: 0(1) 1(1) 1(0)
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5.4 Experimental results

5.4.1 Results on scalable model design and compression

In Chapter 4, some scalable object models for head-shoulder sequences, such as Claire, Miss am,
Carphone, and Akiyo sequences, have been illustrated and their performance has been evaluated.
Figure 4.17 and Figure 4.18 show the designed scalable model for Carphone and Akiyo video
objects. Table 4.3 gives the average PSNR values of Carphone, Claire, Miss am and Akiyo
sequence. Compared with the results in [BEEK-1999], for the Akiyo sequence, it shows that the
proposed method can achieve about 2-5 dB improvements and represent the object motion

precisely.

For non-face video objects, extensive experiments have been conducted to evaluate the efficiency
of the proposed modelling algorithm. Figure 5.18 shows the designed scalable object model for
the Motr_dhtr video sequence.

(a) (b) (@

Figure 5.18 — Scalable object models for Motr_dhtr sequence (considered as a non-face video

object). Image (a) is the model of level 0; (b) is the model of level 1; (¢) is the model of level 2. In

(a), (b) and (c), the node points in level 0 of object contour are included.

The performance of the model design scheme is tested by the model evaluation algorithm in
Section 5.3.2. The motion vectors of node points have Y pixel resolutions and frames 2, 4, 6 and 8
are selected during the test, which is the same as that in Chapter 4. Table 5.1 gives the average
PSNR values of non-Carphone, Claire, Miss_am and Akiyo sequence. It shows that good warping

performance can be achieved using the proposed scalable modelling algorithm.

Some compression results for scalable models are listed in Table 5.2. These scalable object
models are for Carphone, Motr_dhtr, Claire, and Akiyo objects. From the results, it is shown that

only 1-2 kbits is required to encode each object model progressively, which only occupy a small
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portion of the total bits for coding the whole sequence. In fact, further improvement is possible

through the optimisation of ordering and prediction of node points as in [TOUMA-1998] to
reduce the bits of node positions.

Table 5.1 — Average warping PSNR values (dB) of four sequences for different levels

Average PSNR Value (dB)
Level 0 Level 1 Level 2
Motr_dhtr (QCIF) 24.08 28.98 32.94
Coastguard (CIF) 24.04 2741 31.79
Container (CIF) ' 28.71 30.64 33.28
News (CIF) 29.55 32.93 35.41

Table 5.2 — Scalable model compression results by using the proposed scheme

Test Sequences

Carphone | Motr dhir Akiyo Claire

Node number 150 130 140 110

Node Position (bit) 1672 1315 1369 1086
Ordering Layer 0 97 (63) 55 (90) 81 (54) 66 (40)

Proposed | information :

method . | (it (pointsy) | L2¥erl 73 (37) 66 (75) 62 (35) 62 (30)
Layer 2 38 (50) 40 (55) 41 (51) 35 (40)

Total (bit) 1880 1476 1553 1249

54.2 Results on scalable shape representation and coding
5.4.2.1 Results on scalable shape representation

Intensive experiments have been conducted to test the performance of the proposed algorithm.
Scveral video objects are selected, such as Coastguard, Kids, News, Weather sequences. Their
binary shape images are illustrated in Figure 5.19. After scalable shape approximation using the
proposed approximation scheme, the required average number vertices under different error
criteria for different video objects are listed in Figure 5.20. Compared with the methods in
[GERKIN-1997] and [JORDAN-1998], the proposed method can achieve up to 30-80% and 20-
30% respectively of the total number of vettices for lossless reconstruction of test video objects.
The proposed method can also achieve less number of approximating vertices at the coarser layers
although reduction is not significant. However, the positions of the allocated vertices are different

from those generated by the methods in [GERKIN-1997] and [JORDAN-1998.
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Figure 5.18 — Binary shape image of (a) Coastguard, (b) Kids, (c) News and (d) Weather

sequence.

5.4.2.2 Results on scalable intra-shape coding scheme

We test the performance of the proposed intra-shape coding algorithm by coding several widely
used MPEG-4 shape sequences: “Weather” and “Kids” sequences. We evaluate our algorithm by
comparing with the CAE technique because the CAE technique has already been employed by the
MPEG+4, and other vertex-based shape coding methods. Of the various ways to measure
distortion, we utilise the following additive distortion metric per frame, which has also been used
in the MPEG+4 standardised process to evaluate the performance of competing algorithms:

_ Number of Pixels in Error
Number of Interior Pixels

n

(5.7

where a pixel is said to be in error if it belongs to the interior of the original object and the

exterior of the approximating object, or vise-versa.

A number of experiments have been conducted to evaluate the performance of the proposed intra-
shape encoding scheme. The first experiment is to compare the proposed method with those
existing shape encoding schemes in [CONNELL-1997] and [JORDAN-1998], which also belong
to vertex-based shape coding scheme. The corresponding results are illustrated in Figure 5.21. It is
shown that the proposed scalable intra-shape coding scheme can provide 25-60% gain in bit rate
over the scalable encoding method in [JORDAN-1998]. For some sequences, it can achieve 5-

10% gain over conventional non-scalable vertex-based coding [CONNELL-1997] in bit rate.
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Figure 5.20 — Comparison of different vertex-selection methods for contour approximation. (a)

Coastguard; (b) Kids; (c) News; and (d) Weather sequence

Another experiment is conducted to compare the proposed method with non-scalable vertex-based
shape coding method [CHUNG-2000] and CAE in MPEG4 [MPEG4-2001), in terms of R-D
performance. The results are shown in Figure 5.22. From this figure, it is found that the proposed
method has better R-D performance than these shape-coding methods. The R-D performance of
the proposed method is also comparable to the recently developed non-scalable shape coding
method in [WANG-2003] and scalable shape coding algorithm in [MELNIKOV-2000a] by
compared the RD curves in Figure 5.22 with those reported results (see Fig.17 and Fig.20 in
[WANG-2003] for “Kids” and “Weather” sequence respectively, and see Figure 3 in
[MELNIKOV-2000a] for “Kids” sequences). One of the most important characteristics of our
proposed method is that it can achieve scalable shape coding. The R-D performance of our
proposed algorithm shown in Figure 5.22 is achieved by decoding the same shape bitstream.
Table 5.3 lists the average bit usage per frame of four layers for the proposed intra-shape coding
scheme. All of the shape sequences are with the frame rate of 10 frames per second (fps). The

success of the proposed scalable intra-shape coding scheme is the efficient shape representation
scheme and the layer-adaptive intra-coding scheme.
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Table 5.3 Average bit usage per frame for the proposed scalable intra-shape coding scheme

Layer 0 Layer 1 Layer 2 Layer 3 (lossless)
Weather 197 208 257 403
Kids 415 532 733 1471
News 290 385 496 927
Forman 261 344 471 676
Average Bifs Averoge Bits
900 3500
. — X —— Scokble intra-codlag method //x 0 ::: 6::»?::? o e ”
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Figure 5.21 - Comparison of the performance (bits/layer) of intra-shape coding methods
corresponding to: (a) Weather, (b) Kids sequence.
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Figure 5.22 — Comparison of R-D performance of the proposed intra-shape coding method with

other coding scheme for (a) Weather, (b) Kids sequence.

5.4.2.3 Results on scalable predictive shape coding scheme

The performance of the proposed scalable predictive shape coding algorithm has been tested using
the “Weather” and “Kids™ sequences. The same distortion metric as Equation (5.7) is used to

measure the shape coding distortion. The performance is also compared with the generalised
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predictive shape-coding scheme (GPSC) in [KIM-2000] and CAE in MPEG-4. Figure 5.23
presents the bit distortion curves of the proposed algorithm for (a) Weather and (b) Kids
sequence. It shows that our proposed algorithm can achieve better R-D performance than that of
CAE and GPSC techniques. Table 5.4 shows the average bit usage per frame for the proposed
scalable predictive shape coding scheme.

The success of our proposed predictive shape coding is due to the adaptive coding for different

layers and the accurate motion estimation by using CSS image matching of the object contour.

Table 5.4 Average bit usage per frame for the proposed scalable predictive shape coding scheme
Layer 0 Layer 1 Layer 2 Layer 3 (lossless)
Weather 24 52 153 325
Kids 241 359 548 1281
News 51 86 277 569
Forman 83 157 201 406
Average bits IAQ;:‘” bits
400 —x— CAE { —x— CAE
—0— Vertex-based scheme —o0-— Vertex-based scheme
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Figure 5.23 — Comparison of R-D performance of the proposed scalable predictive shape coding
method with those of other coding scheme for (a) Weather and (b) Kids sequence.

5.5 Conclusions

In this chapter, an extensive study has been conducted for scalable object modelling and model
compression. For 2-D mesh modelling and representation, the vertices of object mesh model are
separated into two parts: vertices for shape and vertices for object motion (or vertices of the
interior object). Different compression schemes are proposed for these two parts. This is because

shape information sometimes has other functionalities, such as video object index and retrieval.
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After reviewing the main techniques on mesh model design and shape coding, some algorithms
have been proposed and described for scalable shape representation, scalable intra-shape coding
and scalable inter-shape coding. Experimental results show that the proposed algorithms have
better performance than the existing published methods. After discussing the scalable shape
coding, scalable object modelling and model compression techniques are investigated. A model
design algorithm has been proposed, in which the physical and motion characteristics of the object
surface have been taken into account. After that, scalable mesh models are compressed efficiently.
Extensive study and experiments have been conducted to tesf the proposed algorithms. For
scalable object modeling, it is shown that the designed scalable object models can represent the

object motion more precisely than the method in [BEEK-1999]. The designed object model can be
compressed by using 1-2 kbits,

Scalable shape representation and coding are also investigated and discussed in this Chapter. In
both shape representation and coding, curvature scale space (CSS) image is employed fo detect
the salient feature of object confour and to estimate the contour motion. For scalable shape
representation, the proposed method can achieve up to 30-80% and 20-30% of the total number of

vertices for lossless reconstruction of test video objects while compared with the methods in
[GERKIN-1997] and [JORDAN-1998].

The proposed scalable shape coding method can achieve great improvement of compression
performance by exploiting the geometrical knowledge of coarser levels and statistical entropy
Coding, although more computation is needed. For example, the proposed intra-coding scheme
can provide 25-60% gain in bit rate over the scalable encoding method in [JORDAN-1998]. For
some sequences, it can achieve 5-10% gain over conventional non-scalable vertex-based coding
[CONNELL-1997] in bit rate. Experimental results also demonstrate that the proposed scalable
intra-shape coding algorithm results in a significant improvement in rate-distortion efficiency with

respect to other existing scalable and non-scalable shape coding algorithms.

Experimental results also show that the proposed scalable predictive shape-coding scheme can
achieve better R-D performance than an existing predictive shape coding method and CAE
method of MPEG-4. The proposed scalable shape coding method can achieve great improvement
in compression performance by exploiting the geometrical knowledge of coarser levels, statistical
entropy coding, and novel contour motion estimation scheme. Most importantly, the proposed
scheme can achieve scalable shape coding, which facilitates error protection and error

concealment of shape information. It also facilitates achieving other functions, such as
progressive shape retrieval.
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Chapter 6

Scalable Texture Intra-coding of Video

Objects

6.1 Introduction

In recent years, as MPEG-4 enables object-based video coding for the coding and representation
of semantic units of image and video content called “video objects” [MPEG4-2001], coding
techniques have to be developed for the description of image regions, which are no longer squared

as in conventional rectangular image coding, but may be of arbitrary shape.

Commonly, before video compression, a mathematical transform is used for the reduction of a
large amount of statistical redundancy in video frames. Various mathematical transforms have
been employed. Among them, the discrete cosine transforms (DCT) and the discrete wavelet
transform (DWT) are two widely used transforms, DCT has good de-correlative properties and is
simple for VLSI implementation, so it is applied in most image and video coding standards. In

recent years, DWT is becoming promising due to its several important properties for image
coding:

o  Offering flexible multi-resolution image representations;

¢ Avoiding “block effects” associated with the block based transform due to its global
decomposition characteristic,

The DWT has been chosen by JPEG2000 [JPEG-2000] and used for intra-mode texture-coding in
MPEG-4 [MPEG4-2001]. However, for scalable texture coding of arbitrarily shaped video
objects, the conventional mathematical transform should be extended in order to handle the
problem that arbitrarily shaped video objects have arbitrary numbers of lines and columns.

Several modifications have been proposed [SIKORA-1995] [KAUFE-1997] [SHIPENG-2000],
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which can be classified into three classes. The first class is polynomial fitting, named as padding-
based algorithm [SIKORA-1995] [EGGER-1996] [KATATA-1997]. In these approaches, the
contour blocks from arbitrarily shaped video object planes (VOPs) are first padded into block
regions. The padded blocks are then just handled by conventional transforms, such as DCT and
DWT. However, this method often yields more signal samples to encode after the transforms and

therefore is inefficient in compression. The coding artefacts are commonly seen along the object
boundaries due to the signal padding.

The second class is shape-adaptive DCT (SA-DCT) based scheme [KAUFF-1997]. Shape
adaptive DCT based scheme presented in [KAUFF-1997] is the most popular scheme and
included by MPEG4 Version 2. An attractive feature of this scheme is that the number of
transform coefficients is exactly the same as that of the input samples. The steps for execution of
SA-DCT are shown in Figure 6.1. When applied to a block not fully occupied by objects, SA-
DCT first moves all pixels toward the upper block boundary. A variable basis DCT is applied to
each column with the number of DCT basis functions equal to the number of coefficients in each
column. The pixels are then moved toward the left block boundary, and a similar variable basis
DCT on each row is applied horizontally. Since the SA-DCT always flushes samples in an
arbitrarily shaped block to a certain edge of a rectangular bounding block before performing row

or column DCT transforms, some spatial correlation may be lost, which reduces coding
efficiency.

DCT-5
DCT-4

DCT-1

% AN YTES®
RERRRR
(a) Original segment (b) Vertical DCT (c) Horizontal DCT

Figure 6.1 — Steps for execution of SA-DCT: The pixels in grey correspond to samples inside the

video object.

The third class is shape-adaptive discrete wavelet-based (SA-DWT) scheme [BARNARD-1993]
[SHIPENG-2000]. One of the most popular SA-DWT algorithims is presented in the paper
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[SHIPENG-2000]. In this algorithm, when the data length was longer than the filter length, it was
first truncated to the next available even length and transformed directly with a circular wavelet
transform. The extra data point in case the data length was odd was directly copied into the low
frequency band. When the data length was shorter than the filter length, the Haar transform was

applied. This scheme generates the exactly same number of coefficients as that of the original
object.

Commonly, for image and video coding, SA-DWT should satisfy the following basic conditions
[BARNARD-1993]:

1. The number of coefficients after SA-DWT should be identical to the number of pixels

contained in the arbitrary shaped image region, which is a necessary condition for an
efficient coding method.

2. The spatial correlation and other wavelet transform properties, such as locality and the
.self-similarity across subband should be well preserved. The subbands of all the regions
should fit together without overlaps or gaps

3. For a rectangular region, the SA-DWT should be identical to a conventional wavelet
transform.

The objective of this Chapter is to investigate scalable texture intra-coding of still arbitrarily
shaped video objects. To achieve this, we will begin with a review of subband/wavelet analysis,
and shape-adaptive discrete wavelet transform. Then, we will review some popular wavelet-based
texture coding algorithms, such as Set Partitioning in Hierarchical Trees (SPIHT) algorithm
[SAID-1996], Set-Partitioning Embedded Block (SPECK) algorithm [ISLAM-1999], and
Embedded Block Coding with Optimized Truncation (EBCOT) algorithm [TAUB-2000], and
their extensions for object-based texture coding. After reviewing, an improved shape-adaptive
SPECK algorithm will then be presented and discussed in detail. Their performance will be
evaluated and compared through extensive experiments. Some algorithms, such as SA DWT,
object-based SPIHT and object-based SPECK algorithms are attached in Appendix B.

6.2 Subband/Wavelet analysis

Subband/wavelet analyses have been widely used for image and video compression. For discrete

wavelet transform (DWT), there are two kinds of implementation schemes: two-band filterbank
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convolution scheme and lifting scheme. The wavelet coefficients computed with these two

schemes are identical. In this section, these two kinds of implementation schemes will be
reviewed and discussed.

6.2.1 Two-band filterbank convolution scheme

The subband/wavelet filter banks (FBs) used for image/video compression applications should
have the following properties: perfect reconstruction (PR), linear phase, finite impulse response

(FIR), real coefficient, maximally decimated, and uniform band [VILLASENOR-1995)}. Here are
several of our justifications:

The PR property is highly desirable since it provides a lossless signal representation and
it simplifies the error analysis significantly.

For image and video compression, it is also crucial that all analysis and synthesis filters
have linear phase. Besides the elimination of the phase distortion, linear phase systems

allow us to use simple symmetric extension methods to accurately bandle the
boundaries of finite-length signals.

. The filter length should be relatively short to prevent ringing artefacts in the
reconstructed images and to keep the transform fast.

For image and video compression, especially at low bit rates, we prefer maximally
decimated FBs that do not expand the input signals,

There are also several solutions [VETTERLI-1986] for the filterbank design in order to realize
perfect reconstruction (PR) for a two band split scheme. However, this Chapter does not want to
discuss much on subband/wavelet FIR filterbank design. For review, please refer to some famous
papers and books [ANTONINI-1992] [VETTERLI-1992] [VETTERLI-1995]. Here, we just want
to review the standard 1D two-band subband analysis / synthesis scheme, as shown in Figure 6.2.
The input signal is split into two parts by filtering with the low-pass filter H and the high-pass
filter G . Both generated signals are then downsampled by a factor 2. We assume that these two
signals are podcd in a lossless manner and transmitted error free over the channel to the receiver
side. There, the signals are decoded, upsampled by a factor 2, and filtered with the synthesis filter

H and G. After multiplication by two to restore the amplitude, both signals are added to obtain
the reconstructed signal.
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Figure 6.2 — 1D two-band analysis/synthesis system

To use the wavelet transform for image processing, we must implement a 2D version of the
analysis and synthesis filter banks. Commonly, 2D separable wavelet decomposition is conducted
to reduce the computation. In this case, the 1D analysis filter bank is first applied to the columns
of the image and then applied to the rows. Suppose the image has N rows and N, columns.
After applying the 1D analysis filter bank to each column, we have two subband images, each
having N;/2 rows and Ny /2 columns. Then, applying the 1D analysis filter bank to each row
of both of ‘the two subband images, we have four subband images, each having N;/2 rows and
Ny /2 columns, The original image can be reconstructed perfectly from these four subband

images by using synthesis process.
6.2.2 Lifting scheme

Recently, an altemmative implementation of the subband decomposition or discrete wavelet
transform (DWT) has been proposed, which is named as “lifting scheme” [CALDERBANK-
1998). The generic lifting analysis scheme consists of three steps, the polyphase decomposition,
the prediction step, and the update step, as depicted in Figure 6.3 (). At first, polyphase
decomposition is conducted to separate the even and the odd samples of a given signal S[k]. For

simplicity, it is assumed that S{k] are scalar value. Since the correlation structure typically shows

a local characteristic, the even and odd polyphase components are highly correlated, and
therefore, in a subsequent step, a prediction of the odd samples from the even samples is
performed. The corresponding prediction operator P for each odd sample S4q[k] =512k +1] is

a linear combination of its neighbouring even samples:

Sevenlk]=S[2K] {6.1)
and P(Sgye N1 = T pySeyeal +1]. (6.2)
i

where p; is the lifting prediction coefficient.
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Figure 6.3 — Wavelet analysis and synthesis scheme based on lifting: (a) analysis process and (b)

synthesis process.

As-a result of the prediction step, we replace the odd samples by their corresponding prediction
residual Alk}=S,,,02k] -—P(SM,( Ik]. Note that the prediction step is equivalent to applying a
high-pass filter of a two-channel filterbank [DAUBECHIES-1998] and, in case of video sequence

coding, it is similar to motion-compensated prediction, as described in [WIEGAND-2003].
Finally, the update step of the lifting scheme is conducted in which a low-pass filtering is

performed by updating the even samples S,,,,[k] with a linear combination of the prediction
residuals A[4]. The corresponding update operator U is given by:

U(nYk]=Xu bk +1). (6.3)
i
k1= S yen K1+ U ()] (64)

where #; is the lifting update coefficients.
By replacing the even samples with /[k], the given signal S[k] can finally be represented by /{k]

and A[k], each at half sampling rate as S{k]. In lifting scheme, the lifting coefficients p; and u;

decide the properties of wavelet transform.
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Since both the update and the prediction step are fully invertible, the corresponding transform can
be interpreted as a critically sampled perfect reconstruction filterbank. In fact, it has been shown
that any biorthogonal family of FIR filters can be realized with a sequence of prediction and
update steps [DAUBECHIES-1998]. Figure 6.3; (b) shows the synthesis process of the lifting
scheme. It simply consists of the application of the prediction and update operator in the reversed

order with inverted signs on the summation process, followed by the reconstruction process using
the even and odd polyphase components.

From the structure in Figure 6.3, it can be found that the lifting scheme provides in-place
computation of wavelet coefficients by overwriting the memory locations that contain the input
sample values. This provides a significant reduction in the memory usage. Lifting scheme also
decreases the computational complexity to achieve DWT. Because of these advantages, lifiing
implementation scheme has been included in JPEG 2000 standard [JPEG-2000].

At present, two DWT kernels in terms of the lifting coefficients are popularly used for

image/video coding. They are Haar wavelet and the 5/3 bi-orthogonal spline wavelet, which are
presented as follows:

The Haar wavelet. in the case of the Haar wavelet, the prediction operator Py, and update

operator U, are simply given by:

Prtoar (Seven XK1 = S[2K] - (65)
U o () = K], | 6.6)
such that A[k]=S[2k +1]- S[2k] 6.7
and /[k]=S[2k] +-;—h[k}=»;~(S[2k]+ S[2k +1]). (6.8)

where /[k] and A[k] correspond to the low-pass and high-pass (analysis) output of the Haar filter,

respectively.

The 5/3 bi-orthogonal spline wavelet: The low- and high-pass analysis filters have 5 and 3 taps,
respectively, for the 5/3 spline wavelets. Its simplicity, together with a remarkable good
performance in still image coding (like JPEG 2000), makes its popular use for image and video
subband coding. In the lifting framework, the corresponding prediction operator F;,, and update

operator Us,, of 5/3 transform are given by:
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Py (Seven Y = (51241 + 52k +2) (69)
Um(h)[k1=-}(h[k1+h[k—11), (6.10)
such that:

hk]= S[2k+1]—%(S[2k]+S[2k+2]), (6.11)

I1k] = ST261+ S (hkT + Ak —11)
, “ . (6.12)
=7 S[2K]+ %(S[Zk +1]+ S[2k —1]) - %(S[Zk +2]+ 8[2k - 2))

6.3 Shape-adaptive discrete wavelet-transform (SA-DWT)

This section gives a review of the shape-adaptive DWT algorithm. There are several advantages
of SA-DWT over the conventional DWT for image/video compression. First, the subband
analysis of a region is totally independent of neighbouring regions, so quantisation errors only
have local effect. Second, the high frequency subbands generated by SA-DWT contain less
energy than those of the conventional DWT. Coﬁunonly, the energy in the high frequency
subbands of the conventional DWT mainly corresponds to the strong transitions in the original
image, and the transition information is spread over subbands in several levels and several
directions. Such a spread results in a significant cost for the coding system, but SA-DWT
decreases such fransition coming from the object boundaries. Since filtering across the sharp
edges located at the objects’ contour is avoided, ringing artefacts near these edges will be almost
eliminated. Finally, the bit allocation would be able to favour important regions in a video frame,

since bits can be assigned to each object and each subband segment separately.

Shape adaptive discrete wavelet transform is needed for efficiently coding arbitrarily shaped
visual objects, which is essential for object-oriented multimedia applications. In fact, shape-
adaptive discrete wavelet transform is a more delicate work. Its subsampling techniques and
extension methods should be treated attentively so as not io lessen the performance of final

coding. Commonly, the selected filters and the corresponding subsampling / extension techniques
affect the final coding performance [SHIPENG-2000].

Much research has been conducted on SA DWT [BARNARD-1993] [SHIPENG-2000). In
[BARNARD-1993], the authors gave overview of what needed to be done and how to do for SA-
DWT, but they do not provide a good solution. A comprehensive description of shape-adaptive

146




Chapter 6. Scalable texture intra-coding of video objects

DWT algorithm is presented in Li’s paper [SHIPENG-2000]. In his paper, wavelet decomposition
methods of using different wavelet filters, such as orthogonal filters, even symmetric biorthogonal
filters, and odd symmetric biorthogonal filters in the SA-DWT are discussed in details. Much
research has shown that odd symmetric biorthogonal wavelet filters can achieve better
compression performance [VILLASENOR-1995]. Another advantage of odd symmetric
biorthogonal wavelets is that they can provide linear phase filters, hence, eliminating the phase
distortion caused by magnitude distortion of transformed coefficients. This is very important
when they are applied for image and video compression where magnitudes of the transformed
coefficients are mostly likely to be quantised. Therefore, odd symmetric biorthogonal wavelet
filters have been selected as the default wavelet filters in MPEG-4 standard [MPEG4-2001]. In
our research, only the case of arbitrary length wavelet decomposition using odd symmetric

biorthogonal wavelets is investigated and employed. Refer to [SHIPENG-2000] for more details
of other two cases.
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Figure 6.4 — Example of (a) periodic extension and (b) symmetric extension

Two issues should be clarified related to SA-DWT. The first one in applying wavelet
decomposition for finite-length signal segment is how to deal with the boundary of the signal
segment. In order fo maintain the perfect reconstruction property of wavelet transform, boundary
extension is necessary, such as periodic extension and symmetric extension as shown in Figure
6.4, If the signal segment is long, the correlation between the end of the signal and the start of the
signal is small. There could be a good chance of a sharp change at the transition from the end of
previous signal period to the start of the next signal period if the periodic extension method is
used. In the symmetric extension scheme, the signal is extended symmetrically at the leading and
trailing boundaries of a signal segment. The neighbouring samples with such symmetric

extensions have the same close correlation as in the original signal segment. Therefore, shape
transitions are avoided.
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The other issue is the subsampling for arbitrary length signal segment at arbitrary locations. A
proper subsampling method is important for the SA-DWT. One consideration for the subsampling
is that it should keep the spatial correlation, locality, and self-similarity across subbands so that 2-
D separable wavelet decompositions and pyramid wavelet decomposition can still be applied to
" the arbitracily shaped image region without loss of spatial correlation. The subsampling strategy
can also affect the efficiency of zerotree coding. Commonly, the subsampling process is decided

by the employed wavelet filters. Let {e(i)i=0,-,L, 1), {n(i)i=0,,L;-1},

{E(i),i =0+, Ly ~ 1} ,and {E(i),i =0y, L, - 1} be the impulse response of the low-pass analysis
filter, high-pass analysis filter, low-pass synthesis filter and high-pass synthesis Afilter,
respectively. The filter lengths, both L, and L, are odd numbers. Let x(i) be the input signal

with the finite length with appropriate extensions at the leading and trailing boundaries. The

relations between these filters and wavelet analysis/synthesis process can be summarized in
Appendix B.1

Assuming a signal segment {x(j), j=0,,N —1}, with length N, and combining symmetric
extensions, filtering and subsampling together, the arbitrary length wavelet decomposition using

odd symmetric wavelet transforms can be described as follows (s is defined in Appendix B.1 to
indicate subsampling position):

1. If N=1, this isolated sample is repeatedly extended and the low-pass wavelet analysis

filter is applied to obtain a single low-pass wavelet coefficient. The synthesis process
simply scales this single low-pass coefficient by a factor of 1/K (K = Zf’go'lg(i) ), and

puts it in the correct position in the original signal domain.

2. If N is greater than 1, and p=0 if N iseven, p=1 if N is odd, the signal segment is
extended using the type shown in Figure 6.4 (b). The (N/2+ p(1-s)) low-pass wavelet
coefficients C(i),i=s,"+,(N/2-(1-p)l-s)), are generated by Equation (B_1.5),
(Equation in (B_1.7) in Appendix B.1). The (N {2+ ps) high-pass wavelet coefficients
D(i)i=0,-,(N/2-1+ ps), are generated by (B_1.6), (Equation in (B_1.8) in Appendix
B.1). The synthesis process begins with upsampling the low- and high-pass wavelet
coefficients using (B_1.9) and (B_1.10), respectively. As a result, an upsampled low-pass
segment P(j) and an upsampled high-pass segment O(j) are obtained, where

Jj=0,-+,N—1, The up-sampled low- and high-pass segments P(j) and Q(]) are then
extended using the type in Figure 6.4 (b). The extended low-pass and high-pass signal
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P(j) and Q(;) are then synthesized using (B_1.11) and (B_1.12) to reconstruct the signal
segment r(_j),j =0,--:,N-1.
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Figure 6.5 — Example of SA-DWT with even-sampling for the low-pass wavelet coefficients and
odd-sampling for the high-pass wavelet coefficients for an odd length signal segment [SHIPENG-
2000].

Figure 6.5 examplifies the analysis and synthesis process with even-sampling for the low-pass

wavelet coefficients and odd-sampling for the high-pass wavelet coefficients for an odd length
signal segment.

6.4 Wavelet-based texture coding of video frame

For image and video compression, DWT-based coding algorithms have been proved to
outperform DCT-based coding techniques by a wide margin, in terms of compression efficiency
and enhanced feature such as scalability. That is the reason why both MPEG-4 and JPEG2000
have selected wavelet-based scheme as the basis for coding still texture and images [MPEG4-

2001] [JPEG-2000]. In this section, the main wavelet-based coding algorithms are reviewed. They
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are SPIHT algorithm [SAID-1996], SPECK algorithm [ISLAM-1999] and EBCOT algorithm
{TAUB-2000]. All of these algorithms employ some kind of significant testing of sets or groups
of pixels, in which the set is tested to determine whether the maximum magnitude in it is above a
certain threshold. The results of these significant tests determine the path taken by the encoder to
code the source samples. These significance testing schemes are based on some very simple
principles which allow them to exhibit excellent performance. Among these principles is the
partial ordering of magnitude coefficients with a set-partitioning sorting algorithm, bit plane
transmission in decreasing bit plane order, and exploitation of self-similarity across different

scales of an image wavelet transform.

Figure 6.6 — Three-layer wavelet decomposition of “Lady” image

All of these algorithms consist of three steps: (1) Discrete wavelet transform (DWT); (2)
quantisation; and (3) entropy coding. DWT is used to generate the subband samples. Figure 6.6
shows the wavelet decomposition result of “Lady” image. The original image is represented in
terms of a collection of subbands, which are organised into increasing resolution levels. The
wavelet coefficients are typically organised into a hierarchical data structure, so that bit allocation

and data compaction can be employed more efficiently.

6.4.1 SPIHT

SPIHT algorithm (Set partition in hierarchical tree algorithm) was proposed by A. Said and W. A.
Pearlman [SAID-1996]. It is the refinement of embedded zerotree wavelet (EZW) algorithm of J.
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Shapiro [SHAPIRO-1993], which imposes a hierarchical quadiree structure on wavelet-
transformed image. But in this algorithm, the crucial parts of the coding process are
fundamentally different from EZW technique in that the subset partitioning of SPIHT algorithm is

so effective that even un-encoded binary bit stream can achieve better performance than EZW
algorithm.

SPIHT algorithm can achieve progressive image coding and transmission easily. The encoding
algorithm orders the coefficients by magnitude and transmits the most significant bits first. It can
be stopped at any allocated number of bits, or at any peak signal to noise ratio (PSNR) value. In
the SPIHT algorithm, the parent-children dependencies of subbands are the same as that in BZW
algorithm, which are shown in Figure 6.7 (a). The coefficient at the coarse scale is called the
parent. All coefficients corresponding to the same spatial location at the next finer scale of the
similar orientation are called offsprings. For a given parent, the set of all coefficients at all finer
scales of similar orientation corresponding to the same location are called descendants. Similarly,
for a given child, the sets of coefficients at all coarser scales of similar orientation corresponding

to the same location are called ancestors. The free is defined in such a way that each node has
either no children (the leaves) or four children.

Given a threshold level T, a coefficient X is said to be an element of a zerotree for threshold T

if itself and all of its descendents are insignificant with respect to 7. An element of a zerotree for
threshold I' is a zerotree root if it is not the descendant of a previously found zerotree root for

threshold 7', which is encoded with a special symbol indicating that the insignificance of the
coefficients at finer scale is completely predictable.

In Figure 6.7 (a), the arrows are oriented from the parent node to its four children. The pixels in-
the highest level of the pyramid are the free roots and are grouped in 2 by 2 adjacent pixels.
Ho_wever, the children branching rule is different, and in each group, one of them has no
descendants, In Figure 6.7 (b), it is shown that the parents must be scanned before children, and

all positions in a given subband are scanned before the scanning of the next subband.
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Figure 6.7 — (a) the parent-children dependencies of subbands; and (b) scanning order during
coding significant map of SPIHT algorithm

The significant test order is very important for the synchronization between encoder and decoder
without any header information. There are three lists in SPIHT algorithm. They are the list of
significant pixels (LSP), the list of insignificant pixels (LIP), and the list of insignificant sets
(LIS). They are initialized by different sets. We refer to the set of root node and corresponding
descendants as a spatial orientation tree (SOT). The LSP is initially empty, the LIP is initialized

with the elements of the lowest frequency subband, and the LIS is initialized with the root of each
SOT.

During encoding, a threshold is needed to decide the significance. Commonly, it is chosen as
T(0)=2"0 , where ng is selected such that the largest pixel magnitude, say M , satisfies
2™ <M <2™", The encoding process is progressive in pixel magnitude, using a sequence of
thresholds T{n)=2"0"", n=12,.-. At stage n, all pixels with magnitudes satisfying

T(n)< |x| <27 () are identified as significant and their positions and sjign bits are encoded.

The encoding process includes two passes: sorting pass and refinement pass. During the sorting
pass, the pixels in the LIP --- which were insignificant in the previous pass --- are tested, and
those that become significant are moved to the LSP. Similarly, sets are sequentially evaluated
following the LIS order, and when a set is found to be significant it is removed from the list and
partitioned. The new subsets with more than one element are added back to the LIS, while the
single-coordinate sets are added to the end of LIP or the LSP, depending on whether they are

significant or insignificant, respectively. In the refinement pass, the LSP contains the coordinates

152




Chapter 6. Scalable texture intra-coding of video objects

of the pixels that are visited and refined by encoding the n-th most significant bit. Refer to the
paper [SAID-1996] for the more detailed description on SPIHT algorithm.

6.4.2 SPECK

The SPECK coding algorithm belongs to a class of embedded tree structured significance
mapping schemes [SHAPIRO-1993] [SAID-1996] [ISLAM-1999]. It exploits two fundamental
characteristics of a wavelet-transformed image — the well-defined hierarchical structure, and
energy clustering in frequency and in space, However, SPECK algorithm differs from SPIHT and
EZW algorithms in that it does not use trees which span and exploit the similarity across different
subbands; rather it makes use of sets in the form of blocks. It mainly exploits the clustering of
energy in frequency and space in hierarchical structures of transformed images. In the SPECK
algorithm, the quadtree is formed by successive recursive splitting of a subband block (parent)
into four quadrants children. The pixels are grouped together in sets which comprise of regions in
the transformed image. The transformed image is partitioned into two sets: set § and set I, as
shown in Figure 6.8 (a). Only two linked lists are maintained in the SPECK algorithm: LIS ~ List
of insignificant sets, and LSP — List of significant pixels. The former list contains sefs of type §
of varying sizes which have not yet been found significant against a threshold », while the latter
list obviously contains those pixels which have tested significant against » . Alternatively, as will
become obvious later on, an array of smaller lists of type LIS is used, each containing sets of type
S of a fixed size, instead of using a single large list having sets S of varying sizes. Use of
multiple lists will speed up the encoding/decoding process.

The SPECK coding algorithm consists of the initial step, the sorting pass and the refinement pass.
The algorithm starts by partitioning the image into two sets: set S, which is the root of the
pyramid (or the coarsest level), and set 7 which is everything that is left of the image after taking
out the root (see Figure 6.8 (a)). The dimension of set S depends on the dimension of the original

image and the subband level of the pyramidal structure at which the set lies, To start the
algorithm, set § is added to LIS .

In the sorting pass, when data set S is significant, it is partitioned into four subsets O(S), as
shown in Figure 6.8 (b); each of these four child sets is further tested and partitioned until all the
significant coefficients are found. The significance test results of the four subsets are all coded
together before further processing the subsets. For example, the significant test result of the first
set is coded without any context, while the significant test result of the second subset is coded

using the context of the first coded subset, and so on. In this way, previously coded subsets form
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the context for the subset being currently coded. Once all sets of type S are processed, the set [

is processed by testing it against the same threshold n. If it is found to be significant, it is
partitioned by another partition scheme as shown in Figure 6.8 (c).

s |

(a) (®) ©
Figure 6.8 — Set partitioning in SPECK algorithm: (a) Partitioning of image X intoset S and I;
(b) Partitioning of set .S ; and (c) Partitioning of set I

In the refinement pass, the significant coefficients found in the sorting pass are refined and
transmitted to decoder according to the bit-plane transmission. Once the refinement pass has been
done, the threshold is lowered and the sequence of sorting pass and refinement pass is repeated
against the lower threshold. This process is repeated until the desired rate is achieved. For detailed
information about the SPECK. algorithm, please refer to the original papers [ISLAM-1999].

6.4.3 EBCOT

EBCOT algorithm is proposed by Taubman [TAUB-2000], which is related in various degrees to
much earlier work on scalable image compression, such as Shapiro’s EZW algorithm [SHAPIRO-
1993], Said and Pearlman’s SPIHT algorithm [SAID-1996] and Taubman and Zarhor’s LZC
algorithm [TAUB-1994]. It has been adopted in JPEG2000 [JPEG-2000] due to its high
compression efficiency as well as other excellent features, including resolution and SNR
scalability. Unlike SPIHT algorithm, which uses spatial orientation trees, EBCOT algorithm
partitions each subband into relatively smaller code blocks. Every code block is encoded

separately so that a highly embedded bitstream is generated separately for each code block. Given

a target bit-rate R™% | each of the independent code-block bit-streams can be truncated in an
optimal way so as to minimise distortion subject to the bit-rate constraint, which is referred as
post-compression rate-distortion (PCRD) optimisation.
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Figure 6.9 — Progressive representation of embedded code-block bit-streams in quality layers. The
blocked region identifies the block contributions, which are discarded by truncating the bit-stream

between layerl and 2.

Figure 6.9 illustrates the layered bitstream concept. It also illustrates the effect of truncating the
bit-stream between the first and second layers. Each quality layer must include auxiliary
information to identify the size of each code-block contribution to the layer. When the number of
layer is large, only a subset of the code-blocks will contribute to any given layer, introducing
substantial redundancy in the auxiliary information. EBCOT introduces a two-tiered coding

strategy to compress the auxiliary information for each quality layer, as shown in Figure 6.10.

During the embedded block coding, four different primitive coding operations form the
foundation of the embedded block coding strategy of EBCOT algorithm. The primitives are used
to code new information for a single sample in some bit-plan. If the sample is not yet significant,
a combination of the “Zero coding” (ZC) and “run-length coding” (RLC) primitives is used to
code whether or not the symbol becomes significant in the current bit-plane; if so, the “Sign
coding” (SC) primitive must be invoked to identify the sign. If the sample is already significant,
the “magnitude refinement” (MR) primitive is used to encode the bit for the magnitude of current

bit-plane. In every case, a single binary-values symbol must be coded using the arithmetic coder.

The probability model used by an arithmetic coder involves the following contexts: nine for the

zero coding primitive, one for the RLC primitive, five for the sign coding primitive, and three for

the magnitude refinement primitive.
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Figure 6.10 — Two-tiered coding structure of the EBCOT image compression algorithm

Zero coding (ZC): This primitive is used to code whether an insignificant coefficient
changes to a significant one in the current bit-plane. Eight immediate neighbours of the
current coefficient are used to determine the context mode, which are decided by the
number of significant neighbours in horizontal direction h, vertical direction v and

diagonal direction d , shown in Figure 6.11.

Figure 6.11 — Encoded sample and its neighbours

Run-length coding (RLC): This primitive is used to reduce the average number of binary
symbols which must be processed by the arithmetic coding engine. It is invoked in place of

the ZC primitive when a horizontal run of insignificant samples is encountered and whose

immediate neighbours are all insignificant.

Sign coding (SC): This primitive is used to code the sign of a coefficient when it becomes
significant.
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U Magnitude Refinement (MR): The objective of this primitive is to code the value of a

significant coefficient in the current bit-plane. The contexts are decided by the significance
of its neighbours.

Four encoding passes are defined in EBCOT algorithm which formulates the possible truncation
points for each bit-plane. They are “Forward significant propagation pass”, “Reverse significant
propagation pass”, “Magnitude refinement pass”, and “Normalisation pass”. Paper [TAUB-2000]

gives a detailed description on how to process these passes and generate the bitstream.

After generating the bitstream of all code blocks, the second tier coding engine is ignited, which is
responsible for efficiently identifying the contribution of each code-block to each bit-stream layer,
along with other summary information for the code-blocks. Rate-distortion optimisation algorithm
is developed to allocate the bits among the code-blocks [TAUB-2000]. The inter-block
redundancy is exploited in the second tier coding engine, which only operates on the summary
information for the whole code-blocks, rather than individual samples.

EBCOT algorithm also supports region-of-interest (ROI) coding although in this algorithm the
transform and coding of the ROIs and the background are not done separately in the wavelet

domain. For detailed information about the EBCOT algorithm, please refer to the original papers
{TAUB-2000].

6.5 Wavelet-based texture coding of arbitrarily-shaped video objects

In this section, a number of shape-adaptive texture coding techniques are reviewed, which are the
extensions of the methods discussed in Section 6.4. A straightforward approach is to consider
transparent regions to be permanently “insignificant”, such that significant pass (or sorting pass)
and refinement pass of the encoder can pfocess these transparent regions in a manner identical to
that of other insignificant coefficients. Although most approaches are based on this general idea,
depending on the particular method of significant-map coding involved, additional refinements
are often possible to increase performance. In this section, the main algorithms for texture coding
of arbitrarily-shaped video objects are first reviewed. Then, a proposal for an improved shape-
adaptive SPECK algorithm will be presented and discussed.

6.5.1 Extension of existing algorithms for object-based texture coding
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6.5.1.1 Shape-adaptive SPIHT algorithm (SA-SPIHT)

Much research has been conducted to extend the SPIHT algorithm for arbitrarily shaped object
coding (e.g. [MINAMI-2001]). The aim is to modify the original SPIHT algorithm so that
extraneous coefficients, which are not in the arbitrary region-of-support (AROS), are not encoded.
Similar to shape-adaptive wavelet decomposition presented in Section 6.3, the shape image is also
decomposed into a pyramid of subbands, called shape mask pyramid. In this way, the regions
which belong to the object in each subband are known by both the encoder and decoder. We
create the shape mask pyramid to represent the shape of the video object in each subband. Each
pixel of the shape mask has the 2-bit mask value: 1 bit is used to distinguish whether the current
wavelet coefficient is within the object; the other bit is used to tell whether its child branch is

within the object. The child branch is defined according to the parent-child relations in the SA-
SPIHT algorithm as shown in Figure 6.12.

B Node belongs o the object

D Node does not belong to the object

Solid line : Valid parent-child relation

Dash line : Invalid parent-child relation

Figure 6.12 — Parent-child relation of wavelet trees of SA-SPIHT algorithm
For SA-SPIHT algorithm, a spatial orientation tree is skipped if all coefficients in the tree are not
in the AROS. This is simply done by not putting the coordinates of the root node (in the lowest

frequency band) of the tree in the LIP and the LIS in the SPIHT initialization step.

For a spatial orientation tree with some coefficients not in the AROS, the significance test of a

coefficient in the tree is skipped if that coefficient is not in the AROS. Likewise, the significance
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test of a subset in the tree is skipped if all coefficients in the subset are not in the AROS. As sign
bits and refinement bits are only associated with the coefficients in the AROS, no modification
are needed in related parts of the original SPIHT algorithm for these bits. Finally, when all

coefficients in a spatial orientation tree are in the AROS, the tree is coded in the same way as in
the original SPIHT algorithm.

If the AROS is the whole image, the SA-SPIHT algorithm described above will give exactly the
same R-D performance as the original SPIHT algorithm does. So the SA-SPIHT algorithm

includes the original SPIHT algorithm as a special case. The detail description of SA-SPIHT
algorithm is listed in the Appendix B.2.

6.5.1.2 Shape-adaptive SPECK algorithm (SA-SPECK)

A straightforward extension of the SPECK algorithm in [ISLAM-1999] to encoding video obj ecté
of arbitrary shape is that we set all the coefficients outside the object in each subband to zero.
Then the original SPECK algorithm can be applied just as if the support of the object were
rectangular. No modification of the algorithm would be required. This method is inefficient, since

one bit must be transmitted to tell the decoder that the node or branch outside the object is
insignificant under each threshold.

‘In order to improve its performance, an efficient SA-SPECK algorithm was proposed [LU-2001].

Similar to SA-SPIHT algorithm, in SA-SPECK algorithm, the shape image is also decomposed
into a pyramid of subbands, called the shape mask pyramid. The regions, which belong to the
object in each subband, are known by both the encoder and the decoder. When the spatial
orientation tree is constructed, which node and/or child branch are inside/outside the video object
is known. Before the coding process, the node and branch outside the video object are pruned.
During the sorting pass in SA-SPECK algorithm, those nodes and branches are not added to any
list of LSP, LIP and LIS, Therefore, no information about these nodes and branches are
transmitted. When the encoder and decoder scan these nodes and branches, they will be informed
by the shape mask pyramid and skip over them.

The parent-child relation in SA-SPECK algorithm is illustrated in Figure 6.13. In this figure, the
branches, which correspond to the nodes outside the object (represented by the dash arrows), are

pruned before the encoding process begins. The detail description of SA-SPECK algorithm is
listed in the Appendix B.3,
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Figure 6.13 — Parent-child relationship in the SA-SPECK algorithm
6.5.1.3 Shape-adaptive EBCOT algorithm (SA-EBCOT)

For object-based extension of EBCOT algorithm, a modification is made so that it only scans and
codes the coefficients inside the video object after performing the shape-adaptive wavelet
decomposition [LIU-2002]. For all the three bit scan passes, namely the significant propagation
pass, the magnitude refinement pass and the normalization pass, all coefficients outside the video
object are skipped. The same bit-plane coding primitives (ZC, SC, and MR) are used in the
extended EBCOT, but they are only applied to wavelet coefficients inside the video object. A
direct neighbour outside the object is always treated as an insignificant neighbour. During our
research and experiments, this algorithm has not been implemented and tested. But from the
reported results in [LIU-2002], good compression results can be achieved.

6.5.2 Proposal for texture coding of arbitrarily-shaped video object
In this section, an improved variant of SA-SPECK algorithm designed specifically for shape-
adaptive texture coding has been proposed and discussed. The reason that I choose SPECK

algorithm is its good compression performance as well as fast compression speed [ISLAM-1999].
Furthermore, it is easy to implement by using software.

The improved shape-adaptive SPECK algorithm employs two tactics:
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1. Aggressive discarding of transparent regions from sets after partitioning as shown in
Figure 6.14;

2. Context-adaptive binary arithmetic codec (CABAC) [MARPE-2003] is employed to code
the sign and significant map. For the original SA-SPECK algorithm, the significance
information, the sign, and the bits during the refinement pass are encoded using adaptive
arithmetic codec (AAC). However, it is found the context information around the pixel to

be encoded can be exploited to improve the coding performance, just as the EBCOT
algorithm [TAUB-2000].

Original shape mask  Level § Quadtree Level 1 Quadiree Level 2 Quadiree Lavel 3 Quadires
1 1] I | | 1
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Figure 6.14 — The “shrunk” process to the bounding box of the opaque coefficients in the set

The improved SA-SPECK algorithm starts by splitting the set of transform coefficients A into
individual subbands S which are placed in a list of insignificant sets (LIS). Afterward, the

algorithm follows the common bitplane-coding paradigm, such as SPECK algorithm consisting of
the sorting and refinement passes.

Similar to the original SA-SPECK, the improved algorithm determines the significance of a set by
comparing the largest opaque-coefficient magnitude to the current threshold. Sets without a
significant coefficient are placed in the list LIS . During the sorting pass, each set in LIS is tested
for significance against the current threshold. If the set becomes significant, it is split into four
subsets according to the quadtree decomposition structure illustrated in Figure 6.14. When a set of
coefficients § is split during the sorting pass, the four new subsets, S,, S,, 53, and §,, are
placed into an LIS, recursively tested for significance and split again if needed. Additionally, in
the sorting pass, before the set S is added to an LIS, the set is “shrunk™ to the bounding box of
the opaque coefficients in the set as shown in Figure 6.14. Similar to the original SA-SPECK
algorithm, the improved algorithm encodes the significance test results of the four subsets jointly

before further processing the subsets. If the first three subsets are empty or insignificant, the
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algorithm can deduce the significance of the fourth subset without sending any bits. During

significant coding of set §, the context model is decided from its neighbouring sets, which are
shown in Figure 6.16.

In the improved SA-SPECK algorithm, context-adaptive binary arithmetic codec (CABAC)
[MARPE-2003] is applied to code the significant map, sign bits and refinement bits, in order to
employ the strong dependency among subbands through modelling contexts. By combining an
adaptive binary arithmetic coding technique with context modeling, CABAC can achieve a high
degree of adaptation and redundancy reduction. It significantly outperforms the baseline entropy
coding method of H.264/AVC for the typical area of envisaged target applications. The CABAC
encoder block diagram is illustrated in Figure 6.15. The encoding process of CABAC consists of

three elementary steps: Binarization; Context modeling; and binary arithmetic coding,

bin value for context tuodef update

non-binary valued bin "”‘P l:""‘ h 4 binyulue, Regular
2 . ; . _bin contet model A

syntax element Blaarbze: Lring_._ . b lﬁ?;t:;:: e o Coding
; Englne | coded ba'ls;
regular regular™® L

. syntax :
i e R Mistream
g s %o bypass bypass —
- ~binary valied 3 I : : R - : s
syatax element £ N Byp_as | coded bits:
. S binvalue ~ | Coding Engine X

Binary Arithnictic Coder

Figure 6.15 — CABAC encoder block diagram [MARPE-2003]

Since it is the context model that determines the coding efficiency in the first place, it is of
paramount importance to design an adequate context model that explores the statistical
dependencies to a large degree and that this model is kept “up to date” during encoding. In the

improved SA-SPECK algorithm, different contexts are used for significant bits, sign bits and
refinement bits coding.

For significant bit coding, the neighbouring nodes, shown in Figure 6.16 (a), are included in the
modelling contexts. Eight spatial adjacent nodes from the same subband are utilised to exploit
intraband correlation. Such a contextual structure has been employed in EBCOT algorithm
[TAUB-2000]. In order to exploit the interband correlation, the corresponding node in the next
high subband is also employed, as shown in Figure 6.16 (b). This choice is based on the fact that
there exits a strong correlation between the coefficients of the two adjacent subbands. Instead of

treating the entire resulting context vector (2° totally) as different conditional states, we carefully
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classify into several model classes, similar to the context selection adopted in EBCOT algorithm
[TAUB-2000]. The look-up tables are established accordingly to fast map a given context to the
assigned model index, as shown in Table B_4.1 in Appendix B.4. Given a pixel(j, ), its
significant map can be defined by:

. a_JL if node (i,j) is significant,
0(1’1)_{0, otherwise, i 13

\

Therefore, the variable P, H, V, HV ,and D can be decided as follows:

H=0(W)+0(E),suchthat 0SH <2; (6.14)
V=0(N)+o(S),suchthat 0s¥V s2; (6.15)
HY =H +V ,suchthat 0 HV <4; (6.16)
D =o(NW)+ o(NE)+ o(SW)+ o(SE), such that 0<D<4; (6.17)
P=0(F),suchthat 0<P<1. (6.18)

where, the relative positions of node W, E, N, S, NW, NE, SW, SE and F are
shown in Figure 6.16 (a) and (b).

| bl
5 N [N F
L _1‘,}{ W x EE X
| W S |SE]
HL HH
(a) (®)

Figure 6.16 — Modelling contexts for the coding of significance. (a) Intraband neighbours
included in the context modelling; (b) Interband neighbour during context modelling
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In the original SA-SPECK algorithm, compressibility of sign bits of subband coefficients had not
been fully employed. Improvement on sign bit coding is possible. In the improved SA-SPECK
algorithm, a sign coding scheme similar to EBCOT algorithm is adopted [TAUB-2000}. The sign
coding operation follows the three basic steps:

1. Summarise the sign and éigniﬁcant information about the neighbour coefficients in the
different orientations.

2. Predict the sign of the current coefficient based on the information collected in the
previous step.

3. Encode the correctness of sign prediction.

The contribution from the horizontal direction is formulated in Table B_4.2 of Appendix B.4,
where the relative position of the neighbouring nodes is indicated in Figure 6.16 (a). In Table
B 4.2, variable £ identifies the contribution from the horizontal direction, where the relative
position of the neighbouring nodes W and E are indicated in Figure 6.16 (a), and the pair

(significant/insignificant, -+/-) represents the significant status and the sign of the neighbouring
node, respectively.

The contexts for sign coding are included in Table B_4.3 of Appendix B.4. In Table B_4.3, the
vertical and diagonal contributions, variable v, d4s, and d|35 are defined in the same way as
vatiable #. The sign bit y is then predicted as § . The correctness of sign predictiond is
encoded, which is defined to be 1 if y =% and 0 otherwise.

The same contextual intraband region shown in Figure 6.16 (a) is utilised for conditional coding
of the refinement of the significant coefficients. The contextual information is characterised by
significant map and the significant status with respect to the quantisation threshold at the previous
bitplane level. The related look-up table is given in Table B_4.4, Appendix B.4. In Table B_4.4,

HVP is defined in a similar way to HV except using significance &”{j, j), which is the

significance status with respect to the quantisation threshold at the previous bitplane level.

This improved SA-SPECK algorithm has been fully implemented in software and extensive

experiments have been conducted to test the performance of this algorithm. The results are

included in the following section.
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Figure 6.17 — Video objects used for test: (a) Children; (b) Children-Background; (¢) Stefan; (d)
News; (e) Coastguard
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6.6 Experimental results

Extensive experiments have been conducted to study the scalable texture coding algorithms for
video objects. They are SA-SPIHT algorithm, SA-SPECK algorithm and the improved SA-
SPECK algorithm. The SA-EBCOT algorithm has not been implemented during our research and
not compared with above shape-adaptive encoding algorithms. The above algorithms are tested in
the intra-coding mode without motion estimation and compensation. Five monochrome video
objects are used during the tests which are shown in Figure 6.17. During the encoding and
decoding processes of the arbitrarily shaped video objects, the bitrate (bit/pixel) is calculated
based on the number of pixels within the object. Here, it is assumed that the object shape has been
encoded and the bits used for shape coding is not included. For these five video objects in Figure

6.17, the Rate-distortion curves of SA-SPIHT, SA-SPECK and the improved SA-SPECK
algorithms are shown in Figure 6.18.

Due to the CABAC, the improved SA-SPECK algorithm has higher complexity than the original
SA-SPECK algorithm using arithmetic coder. However, the complexity does not increase much

(about 20-40%) as no binarization step is required. The significant bits, sign bits and refinement
bits are all binary symbols.
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Figure 6.18 — Comparison of R-D performances of different shape-adaptive bit-plane coding
algorithms for (a) Children; (b) Children-background; (c) Stefan; (d) News; (¢) Coastguard

objects
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The average PSNR results of the three algorithms on these video objects are also listed in Table
6.1 to Table 6.4 for the bit rates 0.2 bpp, 0.5 bpp, 1.0 bpp and 1.5bpp, respectively, including the
improvements of the proposed SA_SPECK algorithm over the original one.

Table 6.1 — Distortion performance for the shape-adaptive coders under 0.2 bpp

. PSNR(dB)
Image Object
SA-SPIHT | SA-SPECK | Improved SA-SPECK AdB
Children 19.33 19.78 19.95 0.17
Children-Background 23.98 24.21 24.26 0.05
Stefan 20.85 21.30 21.64 0.34
News 20.13 20.60 20.85 0.25
Coastguard 12.60 14.06 14.71 0.65
Table 6.2 — Distortion performance for the shape-adaptive coders under 0.5 bpp
; PSNR(dB
Image Object Lol
SA-SPIHT | SA-SPECK Improved SA-SPECK AdB
_Children 22.80 23.47 23.55 . 0.08
Children-Background 29.34 29.73 29.78 0.05
Stefan 23.95 24.70 24.83 0.13
News 23.94 24.94 25.22 0.28
Coastguard 18.07 19.19 19.80 0.61
Table 6.3 — Distortion performance for the shape-adaptive coders under 1.0 bpp
" PSNR(dB)
Image Object :
SA-SPIHT | SA-SPECK | Improved SA-SPECK AdB
Children 26.99 " 9787 28.03 0.16
Children-Background 35.37 35.75 35.80 0.05
Stefan 28.11 29.23 29.36 0.13
News 26.65 30.14 30.42 0.28
Coastguard 21.93 23.36 24.28 0.92
~ Table 6.4 — Distortion performance for the shape-adaptive coders under 1.5 bpp
: PSNR(dB)
Image Object
SA-SPIHT | SA-SPECK | Improved SA-SPECK AdB
Children 30.29 3145 31.67 0.22
Children-Background 40.09 40.42 40.46 0.05
Stefan 3144 32.94 33.05 0.11
News 29.77 34.42 34.67 0.25
Coastguard 25.04 27.28 27.96 0.68
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From above tables and figures, it is found that the coding efficiency of SA-SPECK algorithm is
better than that of SA-SPIHT algorithm. The difference of PSNR is about 1.0 — 3.0 dB. The SA-
SPECK algorithm alse preserves the features of an embedded bitstream and allows exact bitrate
control. The improved SA-SPECK algorithm can further improve the efficiency for about 0.1 —
0.4 dB when compared with the original one. Figure 6.19 to Figure 6.23 show the decoded video
objects at bitrates of 0.2 bpp, 0.5 bpp, 1.0 bpp and 1.5 bpp for Children, Children-background,

Stefan, News and Coastguard objects respectively.

(a)

Figure 6.19 — Decoded Children object under (a) 0.2 bpp; (b) 0.5bpp; (c) 1.0bpp; and (d) 1.5bpp

by truncating the same pre-coded bitstream
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‘ Figure 6.20 — Decoded Children-background object under (a) 0.2 bpp; (b) 0.5bpp; (c) 1.0bpp; and
(d) 1.5bpp by truncating the same pre-coded bitstream
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(d)
Figure 6.21 — Decoded Stefan object under (a) 0.2 bpp; (b) 0.5bpp; (c) 1.0bpp; and (d) 1.5bpp by

truncating the same pre-coded bitstream
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(d)
Figure 6.22 — Decoded News object under (a) 0.2 bpp; (b) 0.5bpp; (¢) 1.0bpp; and (d) 1.5bpp by

truncating the same pre-coded bitstream
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(a) (b)

(c) (d)
Figure 6.23 — Decoded Coastguard object under (a) 0.2 bpp; (b) 0.5bpp; (c) 1.0bpp; and (d)
1.5bpp, by truncating the same pre-coded bitstream

6.7 Conclusions

In this chapter, the scalable texture intra-coding techniques are presented for video objects. After
reviewing texture coding techniques for video objects, the theory and implementation of
subband/wavelet analysis are discussed and the shape-adaptive discrete wavelet transform
algorithms are reviewed. The main wavelet-based texture coding algorithms, such as SPIHT,
SPECK, and EBCOT algorithms, are discussed, followed by their extension to arbitrarily-shaped
objects. An improved SA-SPECK algorithm has been proposed that incorporates the context-
adaptive binary shape coding (CABAC) into the shape-adaptive SPECK algorithm. Extensive
experiments are conducted to code arbitrarily shaped video object in intra mode. The results show
that the improved algorithm achieves higher coding efficiency compared with SA-SPIHT and the
original SA-SPECK algorithm. This algorithm will be employed in the proposed scalable 2D

model-based texture coding scheme, which will be discussed in Chapter 7.
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Chapter 7

Scalable 2D Model-based Texture Inter-

coding

Excellent compression performance for scalable intra texture coding was exhibited in Chapter 6.
However, the intra texture coding scheme can not achieve efficient texture coding of video objects
because no temporal information is employed. In this Chapter, a scalable 2D model-based texture

coding scheme is proposed, which is a combination of temporal filtering and the improved shape-
adaptive SPECK algorithm presented in Chapter 6,

The designed scalable 2D model-based texture coding scheme possesses the following desirable
properties:

. Free from DCT blocking artefacts: In comparison to the conventional DCT-based coder, the
designed scheme incorporates warping motion compensation and wavelet analysis. As a

result, the reconstructed texture does not show the annoying blocking artefacts at very low
bit rate video coding.

. Error resilience: Error propagaﬁon in the proposed scheme, as well as other scalable video
coding scheme based on temporal filtering [OHM-2005], is limited by the length of the
temporal synthesis filters. This is the advantage of employing temporal filtering technique.

o Excellent compression efficiency: The redundancy in the source video is efficiently reduced
by temporal filtering with warping motion compensation of video objects. The
representation of video frames into video objects also improves the motion estimation and
compensation. The subband correlation can be effectively exploited through the improved
shape-adaptive SPECK algorithm. The experimental results show that the proposed coding
system outperforms the nonscalable standard MPEG-4 coder over a wide range of bitrates

in PSNR performance. Its performance is also comparable to H.264 at very low bit rates
(<10Kkbits/s).
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Flexible and highly scalable bitstream: The proposed scalable texture coding system can
accommodate a wide variety of scalable functionalities utilising the multi-resolution nature
innate in temporal and spatial subband filtering, and scalable object modelling. Most
importantly, these desirable scalable features are provided without a significant

performance loss when compared with H.264, which is commonly seen in traditional hybrid
coding for scalable applications. .

The organisation of this chapter is as follows. Related works on scalable video coding in the
literature are first reviewed and commented in the next section. The discussion covers the hybrid
DCT-based scalable video coding systems, wavelet-based scalable video coding systems, and
motion compensated 3D wavelet-based video coding techniques. The proposed scalable 2D
model-based texture coding scheme is then presented in Section 7.2, which includes scalable
motion vector coding and rate-distortion optimised bit truncation. The performance of the

proposed scheme is evaluated through extensive experiments, as discussed in Section 7.3. The
chapter is summarised and concluded in Section 7.4.

7.1 Overview

With the recent expansion of multimedia applications, video coding systems are expected to
become more flexible. In particular, they should be able to adapt a single video bitstream to
variable fransport conditions (bandwidth and channel error rate) and to varying receiver capability
and demands (display size, manipulation and applications) as well. Scalability is the expected
functionality to address this issue. Scalable coding methods allow the decoder to partially decode

a single compressed bitstream depending on the conditions (bit rate, errors and recourses),

In Chapter 2, much discussion has been conducted for scalable video coding, which has been an
active research field over the past decade. A scalable stream can offer adaptivity to varying
channel ewor characteristics, and different kinds of users. For wireless communications,
scalability allows the adjustment of the source rate and the application of unequal error protection
in response to channel error conditions. For internet transmission, scalability enables variable-bit-
rate fransmission, selective bit discarding, and the adjustment of the source rate to correspond to
different modem rates, and diverse device capabilities. Scalability becomes increasingly important
for rich media access from anywhere, by anyone, at any time, with any device and in any form.

Due to its importance, scalable video coding (SVC) is currently being intensively investigated
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[MPEG-2003] [RADHA-1999] [MARPE-1999] [SCHA-2000b] [LUO-2001] [LI-2001]
[SCHWARZ-2004]. Some methods have been submitted for the proposals of MPEG-4 Part 10:
SVC standard. Commonly, these methods can be classified into three classes: DCT-based hybrid
scalable video coding, wavelet-based scalable video coding, and motion compensated (MC) 3D

wavelet-based video coding. In this section, several scalable video coding techniques will be
reviewed and analysed,

7.1.1 Hybrid scalable video coding

Current standards like H263 or MPEG4 are based on block DCT in coding of displaced frame
difference (DFD). In these hybrid coders, scalability is achieved through additional layers of the
single-scale prediction loop that delivers one base, and one or more enhancement video streams
[LI-2001] [WU-2001] [SCHA-2001} [SCHA-2002], which is named as Fine-Granular-Scalability
(FGS). These proposed solutions are not very granular except for the quality (or SNR) scalability,
as provided in MPEG-4 FGS algorithm [RADHA-1999], where the decoding process can be
stopped at any point of the enhancement layer. Temporal scalability is obtained at a reasonable
cost by sending some of the B and P frames in the enhancement layer, where spatial and SNR
scalable schemes have a very limited efficiency. Experiments with MPEG-4 and H.263 using
scalability modes show that generally the coding efficiency would lose 0.5-1.5 dB with every
layer, compared with a non-layered coding scheme [SCHA-2000b]. It is difficult for these

schemes to achieve scalability efficiently since there is always a potential drifting problem
associated with predictive coding [WU-2001].

Recently, the researchers in HHI have proposed a scalable extension of the H.264/AVC video coding
standard [SCHWARZ-2004]. To achieve an efficient scalable bit-stream representation of a video
sequence, the temporal dependencies between pictures are exploited by using an open-loop subband
approach. The related temporal analysis-synthesis filter band structure is generalised to facilitate an
adaptive block-based choice between the motion-compensated lifting representations of the Haar filter
(uni-directional prediction) and the 5/3 filter (bi-prediction), both coupled with multiple-reference
frame capabilities. Furthermore, in this method, an intra model can be chosen on a block basis to
efficiently represent blocks that cannot be reasonably predicted using motion compensation. In order
to provide spatial scalability, a pyramid structure is employed. Although motion compensated
temporal filtering (MCTF) is independently applied in each spatial layer, a large degree of inter-layer
prediction is incorporated. Intra macroblocks and residual macroblock representing temporal high-pass
signals can be ptedicted using the corresponding interpolated reconstruction signals of the previous
layers. The motion description of each MCTF layer can be used for a prediction of the motion

description for the following enhancement layers. A remarkable feature of this hybrid scalable video
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coding scheme is that most components of H264/AVC ate used, while only a few have been adjusted
to the motion compensated temporal filtering structure. Experimental results indicate that this hybrid

scalable coding method is capable of providing a coding efficiency nearly comparable to that of an
original H264/AVC encoding [SCHWARZ-2004].

7.1.2 Wavelet-based scalable video coding

Another kind of scalable video coding technique is based on wavelet analysis. As we know,
wavelet transform is an efficient tool for video decomposition, which can pack the energy of
video into a small set of wavelet coefficients, and lead to a nice scalability. Applications of the
wavelet transform in video coding follow two paths: motion compensated wavelet residual coding
[CHENG-1997] [SHEN-1999] [MARPE-1999] [XU-2000] [ASBUN-2000] and 3D wavelet video
coding [THAM-1998] [KIMB-20600].

In the motion compensated wavelet residual encoder schemes, the current frame is predicted by

* the content from the previous frame, subject to the object motion. The prediction residue is then

encoded by wavelet encoder. The framework of the coder is very similar to existing video coding
standards, such as H264, except that the residual frame is encoded using a wavelet-based encoder
instead of DCT-based encoder [SHEN-1999] [MARPE-1999] [ASBUN-2000]. In [SHEN-19991],
a scalable adaptive motion compensated wavelet (called SAMCoW) algorithm was proposed,
which used motion compensation to reduce temporal redundancy. The intra-coded frames (I-
frames) and the residual frames are encoded using an approach similar to the embedded zerotree
wavelet (EZW) coder. An adaptive motion compensation scheme is introduced to address error
propagation problems. This encoder can achieve comparable performance to the more traditional
hybrid video coders, such as H. 263. The scheme in [MARPE-1999] used a modified block-
matching algorithm, so called overlapped block motion compensation (OBMC). Like
conventional block-based motion compensation, OBMC is a very efficient technique for temporal
predictive coding with the advantage of eliminating blocking artefacts in the prediction error
signal, which can reduce the efficiency of wavelet-based residual coder. Furthermore, an
optimisation activity on the wavelet coder is conducted in this scheme to improve the coding
performance. The experimental results demonstrate that this coder can achieve better performance
than MPEG4. One of the disadvantages of these motion compensated wavelet residual coding
schemes is that they can not achieve highly scalable bitstreams.

An alternative to the predictive approaches in various video coding standards is 3D wavelet video
coding, which has been investigated by several researchers [THAM-1998] [KIMB-2000]. 3D

wavelet video coding applies wavelet transform both temporally and spatially, and then encodes

177




Chapter 7. Scalable 2D model-based texture inter-coding

the transformed coefficients using entropy coding [KIMB-2000]. With a proper entropy coding
and bitstream packaging scheme, the generated bitstream can achieve spatial, temporal, and
quality scalabilities simultaneously. Experimental results turn out that 3D wavelet-based video
coding is competitive with standard motion compensated predictive coding schemes, In [KIMB-
2000}, Kim reports that their 3D SPIHT coder generates a fully embedded bitstream that can be
truncated at points and still decodable to the best quality available. On the other hand, the
straightforward 3D wavelet coding scheme does not use motion compensation to remove temporal
redundancy. The primary weakness of the existing 3D wavelet video coder lies in the temporal
filtering. Although the computationally intensive motion estimation is avoided, this makes the
performance of 3D wavelet video coding very sensitive to the motion. Without motion
information, motion biur will occur because of the temporal averaging effect of several frames.
For the video sequence or objects with large motion paitern, the object motion (such as panning

and zooming) causes the object to be misaligned along the temporal direction, and leads to
compression inefficiency.

7.1.3 Motion Compensated (MC) 3D wavelet based video coding

For 3D wavelet based video coding, much work has been done to improve the correlation of the
video signal along the temporal direction, by employing motion estimation/compensation
[ZHANG-1992] [TAUB-1994] [OHM-1994] [WANG-1999] [XU-2000] [XU-2001]. Taubman
and Zakhor [TAUB-1994] pan shifted the video sequence before the 3D wavelet transform was
applied. Ohm [OHM-1994] and Choi [CHOI-1999] incorporated block matching into the
temporal transform by separately handling the covered / uncovered, connecied / unconnected
regions. Xu et.al proposed a motion threading (MTh) approach so that the pixels along the same
motion trajectory are aligned for wavelet filtering [XU-2000]. In this scheme, macroblock-based
backward motion estimation is performed from the first frame to the last frame, Pixels along the
same motion trajectory are aligned to form non-overlapped motion threads. Afterward, the shape-
adaptive wavelet transform is applied along each motion thread. After temporal and spatial
decomposition, the coefficients are encoded with embedded entropy coding to form scalable
bitsiream. This method outperforms MPEG~4 up to 1.5-2.5dB in those sequences with simple

motion. However, it is about 0.5-1.8 dB inferior to MPEG-4 in compressing those sequences with
complex motion [XU-2000].

Recently, the performance of motion compensated (MC) 3D wavelet video coding (MC-3DSBC)
has improved greatly due to the use of lifiing-based wavelet transforms, which allow for full
adaptability in the selection of reference pictures, MC mode selection, and advanced motion mode

for motion estimation [BOTTREAU-2001] [LUO-2001] [SECKER-2001]. Most methods usually
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apply motion compensated temporal filtering (MCTF) combined with a 2D spatial wavelet
transform. The structure of the MCTF-based encoders enables high flexibility for scalability, i.e. a
high number of spatial, temporal and quality representations with fine granularity over a large
range of bitrates. In MCTF, the combination of lifting wavelet filters with motion compensation

enables an open loop implementation which can also improve error resilience and solve the drift
problems of the hybrid coding approaches.

Based on the order of the spatial and temporal processing, MC-3DSBC methods can be classified
into two major classes:

Class 1: Inter-frame wavelet (t + 2D). In this class, the open loop MCTF is first performed
on the temporal axis followed by a 2D wavelet spatial decomposition. So, the original
frames are first motion compensated with a lifting wavelet transform to exploit the temporal
redundancy. Note that motion estimation and compensation are performed in the time
domain. The decomposed temporal frames are then spatially transformed by 2D spatial
wavelet filters, and the wavelet coefficients are entropy encoded. Several scalable video
coding algorithms fit well in this category, e.g. [SECKER-2001] [WOODS-2002]} [LUO-
2003] [XU-2004] [CHEN-2004] [WU-2004] [WIEN-2004] [HAN-2004].

Figure 7.1 — Architecture for the proposed Inter-frame wavelet coders (t+2D).

Figure 7.1 presents the general architecture for inter-frame wavelet coders. In the first step,
a temporal decomposition of the input video is performed, followed by a spatial
decomposition of each temporal subband. The motion vectors for each spatial resolution

level and the wavelet coefficients are then entropy coded.

Although many schemes are based on this architecture, there are some differences among

them. In [SECKER-2001], motion-compensated lifting steps are used to implement the
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temporal wavelet transform, which preserves invertibility, regardless of the motion model.
Recently, MC-EZBC scheme proposed by Woods et al [WOODS-2002] has become
prominent because of its excellent performance. In MC-EZBC, each pair of frames is first
motion estimated with hierarchical block structure, and then decomposed into a high-band
frame and a low-band frame by the motion-aligned lifi-based Haar filter. MC-EZBC
efficiently solves the problems in the fractional-pel motion aligned temporal transform due
to the use of lift-based wavelet transform. For example, one of the proposals for MPEG
SVC is based on MC-EZBC [WIEN-2004]. Within this scheme, the temporal redundancy is
removed by MCTF with a biorthogonal 5/3 filter pair and a sliding window approach, i.e.
the temporal filtering is extended beyond the boundaries of the current GOP. The motion
compensation is performed using variable block sizes, and a rate distortion motion
estimation and mode decision is performed with the definition of different block-modes and
a global scene change flag, The precision accuracy is ¥ pel and 8-tap interpolation filters
are used. Motion vector data is encoded employing median prediction and Context Adaptive
Binary Arithmetic Coding (CABAC) [MARPE-2003]. In order to reduce the blocking
artefacts caused by the block based motion compensation, a deblocking filter is applied at
the decoder side at each resolution level, Its filter design is similar to the in-loop deblocking
filter in H.264/MPEG-4 AVC [H264-2003]. After the temporal processing, the MCTFE
prediction error is spatially decomposed using 9/7 Daubechies wavelet filters and entropy
encoded using Embedded Zero Block Coding (EZBC) [HSIANG-2001]. The EZBC
technique provides a high granularity for SNR scalability. The weak point of the scheme in
paper [WIEN-2004] is the absence of motion scalability and object scalability.

Luo et al [LUO-2003] proposed an advanced MTh technique, trying to improve the method
in [XU-2000] by continuous threading a bi-directional alignment. In this method, block-
based motion estimation is first performed between pair of adjacent frames. According to
the motion vectors of the blocks they belong to, pixels along the same motion trajectory are
linked into motion threads. In this method, an R-D optimized technique is introduced to
estimate motion vectors and select proper prediction modes for each block. Promising
experimental results have been demonstrated that this method can be competitive with the
state-of-the-art H.263 video standard on coding efficiency. The advanced MTh technique
has been further improved and submitted as a MPEG-21 SVC proposal [XU-2004], which
employs a Barbell lifting implementation of the wavelet transform. Within this technique,
both the prediction and the update step of the lifted wavelet transform are modified. In the
lifting stage, each output coefficient is calculated from a set of pixels in each input frame,
instead of using a single pixel value. The correspondence from the set of pixels to the single

coefficient is established by linear functions. They minimize the amount of energy in high-
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pass frames and remove ghosting artefacts from the low-pass frames. They are also
responsible to follow the motion trajectory in an efficient way, i.e. to perform motion
compensation between frames that belong to a Group of Pictures (GOP). Both
unidirectional prediction, equivalent to an extension of Haar filtering, and bidirectional
prediction, equivalent to 5/3 filters, are supported and a method to adaptively choose the
best option is also proposed. The motion compensation supports adaptive block size (similar
to H.264/MPEG4 AVC), overlapping block motion compensation (OBMC) and % pel
precision for motion vectors. The motion vectors are encoded in an embedded bitstream, in
a coarse to fine fashion, i.e. the motion information is scalable, and the bit budget allocated
for motion vectors at each layer can be adjusted according to the target bit rate and spatial
resolution. After temporal filiering, the wavelet coefficients ate encoded using a 3D variant
of the EBCOT algorithm [TAUB-2000], already used in the JPEG2000 standard to provide
SNR scalability. The advantages of this method are the 3D EBCOT engine, and the motion

compensation tools with scalable motion vectors.

“For this class of coding architecture, experimental results obtained with SNR-scalable
MCTF video coders suggest that this architecture can be comparable or superior in rate-

distortion terms to an optimised non-scalable coder that uses: the closed-loop structure
[CHEN-2004].

Class 2: In-band MCTF (2D + t). For the methods of this class, spatial uansfonn precedes
temporal filtering. As a result, the application of temporal prediction and temporal update of
the lifting decomposition accurs in the wavelet-domain. In this approach, each video frame
is first spatially decomposed into multiple bands using a 2D wavelet spatial decomposition
and then the temporal correlation for each band is removed using MCTF. Typically, a
complete to overcomplete wavelet transformn (CODWT) is used [PARK-2000] to improve
the performance of the motion compensation in the wavelet domain. Examples of scalable
video coding methods following this architecture are included in papers [BOTTREAU-
20011 [ANDREO-2002] [TUBARO-2004] [VIERON-2004] [BAUD-2004].

Figure 7.2 shows a general architecture for the in-band MCTF codets, In this scheme, the
2D spatial wavelet decomposition is performed before temporal filtering, and motion
estimation and compensation is achieved in the subband domain. However, since the spatial
wavelet transform used is not shift invariant, i.e. spatial shifts of 1 pixel in the time domain
can not be translated directly in the frequency domain, an overcomplete wavelet

representation is used, which is achieved by a CODWT transform.
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In [BOTTREAU-2001}], a fully scalable 3D subband video codec is presented. The
proposed codec is based on 2D+t subband decomposition. In this codec, groups of frames
are first temporally filtered using motion compensation and then spatially decomposed with
wavelets. The spatial-temporal coefficients are further scanned and compressed using a new

SPIHT-like strategy, together with arithmetic encoding, which provides a combination of
temporal, spatial and SNR scalability.

Figure 7.2 — Architecture for the In-band MCTF coders (2D+t).

In [ANDREO-2002], the proposed framework applies the in-band MCTF (IBMCTF) after
the DWT is performed in the spatial domain. To overcome the inefficiency of MCTF in the
critically-sampled DWT, a complete-to-overcomplete DWT (CODWT) is performed.
Furthermore, in order to improve the efficiency of motion compensation, an algorithm for
optimised multi-hypothesis temporal filtering is also proposed. Experiments show that the
proposed in-band MCTF equipped with multi-hypothesis prediction and update is
comparable to the method of class 1 in coding efficiency over a large range of bitrates under
the same experimental conditions. The in-band structure additionally permits the
independent temporal filtering of each resolution of the input content, which enables many

potential developments for multi-resolution decoding.

The in-band MCTF (2D + t) approaches present the potential advantage of adaptive tuning
of the lifting decomposition across resolution levels according to different criteria for
complexity, coding efficiency and scalability, something that is not possible with the
conventional f+2D approaches. However, the disadvantage of (2D +t) approaches is
their limited performance, ranking in the last positions for both scenarios during the MPEG-
21 SVC evaluation [ASCENSO-2004]. Further investigations and developments are
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probably required in order to obtain, with a (2D + ¢) approach, results comparable to those
obtained with the other techniques.

7.2 System description of scalable 2D model-based texture coding

In this section, a scalable 2D model-based texture coding scheme is discussed for arbitrarily
shaped video objects. In order to improve the efficiency of temporal prediction, in the proposed

scheme, motion compensated temporal filtering (MCTF) is employed, which is similar to MC-

3DSBC of class 1. However, the proposed scheme has the following differences compared to the
above reviewed methods:

Mesh-based motion estimation is conducted instead of block-based motion estimation.
Currently, most motion compensated 3D wavelet video coding techniques are based on
.block-based motion estimation and 3D-DWT coding structure, which suffers from the
appearance of the so-called “disconnected” pixels occurring in the areas not conforming to
the rigid translation model and in occluded/exposed areas [OHM-1994]. Many measures
have been proposed to reduce these effects, such as deblocking filtering [WIEN-2004] and
overlapping block motion compensation [XU-2004]. However, these effects still exit for
very low bit rate coding. Mesh-based motion compensation can overcome above

disadvantages due to the existence of unique trajectories (i.e., one-to-one correspondence
between all positions in analysed frames).

Motion compensation is conducted in the object domain, instead of the frame domain. As

the video frames are represented into video objects, the effects of motion discontinuity

between different video objects on motion compensation are reduced.

Rate-distortion optimised rate control is achieved easily among video objects and frames.

During the motion estimation of layer i, the encoding rate for motion vectors R, ; and the
motion compensation error D, ; are recoded. At the same time, during spatial bit-plane
coding, the encoding rate R, ; and approximation error D,,,.,,; of bit-plane j are also

recoded. All of this recoded rate-distortion data is used during the final bit packetising step

to achieve optimal bit allocation among video objects, and among object motion and
texture.

Figure 7.3 shows the general structure for scalable 2D model-based texture coding scheme. This

scheme assumes that the video frame has been segmented into several video objects with different
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motion patterns. It is also assumed that object shape and model have been encoded. The detailed

description of the proposed scheme is included in the following sections.
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Figure 7.3 — General structure of the proposed 2D model-based texture coding scheme
7.2.1 MC-based lifting scheme for temporal filtering

During the initial research on incorporating motion information into the 3D wavelet video coding
[TAUB-1994] [OHM-1994] [HSIANG-1999], filter bank-based filtering is employed during
temporal filtering. However, in these approaches, neither the perfect reconstruction can be
achieved, nor the motion accuracy is sufficient. The tight coupling between the temporal

transformation and the motion models also hampers the use of wavelet kernels other than the Haar
‘wavelet in the temporal domain.

In 2001, several papers have been published independently on the temporal DWT through lifting
scheme [SECKER-2001] [LUO-2001] [BOTTREAU-2001]. In these papers, the lifting realisation
of temporal DWT with motion compensation applying along the lifting steps has been
investigated which can achieve perfect reconstruction for temporal filtering and can also achieve
arbitrary motion accuracy. Therefore, in our proposed scalable 2D model-based texture coding

scheme, the lifting implementation of DWT has been applied during temporal filtering, which is
discussed in details in this section,

In Chapter 6, lifting scheme for DWT has been discussed in detail. The diagram of the lifting
scheme for temporal filtering is the same as that in Figure 6.3. Let s[X, %] be a video signal with

the spatial coordinate X = (x, y)T and the temporal coordinate % . The prediction operator Py,

and update operator Uy,,. for the temporal decomposition using the lifting representation of the

Haar wavelet are given by
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Py (81X 2k +1])= s[X 2k] (7.1)
U saar ([X 2k]) = %n[x.kl, (7.2)
where A|X,k]=s[X 2k +1]- Pg,,, (s[X 2k +1]). (1.3)

For the 5/3 transform, the prediction operator F,; and update operator Us,5 are given by:

Pg;5(s[x 2k +1)) =%(S[X.2k] +s{X 2k + 2]) (7.4)
U, (51X ,2k])=%(h[X.k]+ X,k —1]), (7.5)
where h[X,k]=s{X 2k +1]- P55 (s[x,2k +1]). (7.6)

In the proposed scheme, the lift-based 5/3-filtering structure is employed to achieve temporal

filtering.
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Figure 7.4 — Forward and inverse lifting wavelet and the elementary lifting operations (circled in

the forward lifting)

Figure 7.4 illustrates a sample of one-level bi-orthogonal 5/3 lifting wavelet, The original data

X0, Xj, ..es Xg is input at the left, while the decomposed wavelet coefficients are output at the

right two columns. It is observed that the wavelet coefficients are calculated through two stages of

computation. The two-stage lifting process can be formulated as follows:
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{H i =X +ax(xg; + x9149)

’ Bl B o 7.
Li=x2i+bX(H,-_1+H,) where a=-1/2, b=1/4 (7.7

With normalisation, the lifting calculation is equal to the traditional bi-orthogonal 5/3 convolution
kernel:

V2

1
H; =T(x2‘” "Ex(xm' +x2i+2)]

(7.8)
3 1 1
L= Ji(zxzi + 2 X (x2i-l + xzm)*g X (x2i—2 s x2i+2))

Circled in Figure 7.4 (a), the elementary lifting operation unit involves only three nodes, the
updated value can be saved in the same memory of the original pixel, which is called in-place
calculation. Each elementary forward lifting unit can be straightforwardly inversed to an inverse

lifting unit. The inverse wavelet lifting structure is shown in Figure 7.4 (b).

Within the temporal lifting structure, the frames go through the lifting stages step by step. The
calculation process first upgrades the odd frames to the high pass wavelet coefficient frames, and
upgrades the even frames to the low pass coefficient frames. For each pixel or patch in the odd

frame, motion estimation is conducted to find the corresponding pixels and patches from its left or
right frame, or both frames.

Figure 7.5 shows the lifting-based 5/3 wavelet temporal filtering structure [LUO-2003], where
each column is a frame and each block represents a pixel. Block-based or mesh-based motion
estimation is always from an odd frame to an adjacent even one. For the pixels in the odd frame,
motion compensation is conducted to find their comesponding matched pixels in their
neighbouring even frame or frames. Some criteria can be used to decide whether the pixels are
predicted from one frame (forward or backward prediction) or from two frames (bi-directional
prediction). For the pixels which have corresponding matched (one or two) pixels in the
neighbouring frames, lifiing step is employed to get the high-pass part. If no pixel matches this
pixel, intra-prediction is conducted. Following the lifting step, update step is conducted for the
even frames. The pixels which are originally terminated in many-to-one mapping can continue the
temporal ﬁltéring without being stopped, as shown in Figure 7.5. Within the elementary lifting
operation, the original terminated pixel in Frame, can be upgraded using both its left and right
matching pixels instead of being stopped at the right side. When the anchor pixel in Frame, is to

be lifted, though many pixels in Frame, are pointing to it, it is only calculated with the first
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scanned one according to the motion scan order. For a non-referred pixel in an even frame, it is
still linked on both sides using the motion vectors of the adjacent motion threads. It is very easy to
generate the invertible fractional-pel accuracy motion threading with lifting structure. As
indicated with the dashed arrows in Figure 7.5, all the motion estimation directions are from an
odd index frame to an even one, either forwardly or backwardly. An elementary temporal lifting
operation can be regarded as a bidirectionally motion compensated prediction process among

three consecutive frames.

Frameg Frame] Frame2 { = o N Framen

Onginal ~ Many-to-one
termunated  mapping Non-referred

Figure 7.5 — Lifting-based temporal filtering based on bi-directional motion search [LUO-2003]

Figure 7.6 illustrates a first-stage elementary lifting operation in which frame F,,,, is lifted to a
high pass coefficient frame. The solid curve with arrow represents the pixel motion vector
generated from the block motion estimation, and the dashed curve represents the pixel motion
vector which is directly inversed from the solid one. As shown in Figure 7.6, in this lifting stage
where frame F,,, is to be upgraded to a high pass frame, if pixel x, in frame F,,,, refers to the half
pel between x, and x, in Fy,, then in the next lifting stage where F, is to be upgraded to a low
pass frame, x, in Fz, will accordingly refer to the half pel between x, and xs; in Fyuy. In other
words, the counterpart motion vectors are strictly kept with inverse direction. The quarter-pel
operation resembles the similar method. Based on the elementary lifting operation, the reference
frames in each lifting stage can be reproduced in the decoder side, thus the perfect reconstruction

of the wavelet synthesis is guaranteed.
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Many algorithms have employed the lifting scheme for temporal filtering [SECKER-2001] [LUO-
2003] [XU-2004]. However, the difference of the proposed scalable 2D model-based texture
coding from these methods is that warping motion compensation is applied instead of block-based
motion compensation. Warping motion compensation using scalable object mesh model will be

discussed in the following sections.
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Figure 7.6 — Quarter-pel elementary lifting operation

7.2.2 Warping motion compensation using object mesh model

Block-based motion compensation (MC) for temporal filtering has some inherent effects that can
degrade the visual quality of decoded video sequences. One of the effects is blocking artefacts,
which are clearly related to the use of block-based MC. If the object motion cannot be represented
properly by the block-based motion model, motion-compensated images tend to have a visnally
noticeable block structure. Following the perfect reconstruction property of the lifting scheme, the
block structure of the temporal subband frames can be compensated at the high bit rate. However,
when employing a coarser quantisation at lower rates, the block structure becomes visible in the

reconstructed frames.

In order to mitigate blocking artefacts, a deblocking mechanism can be applied during
reconstruction and can be incorporated into the MC-based temporal lifting scheme. For example,

in [XU-2004], overlapped block motion compensation (OBMC) is adopted to improve the
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performance of motion compensation. Alternatively, warping motion compensation can be
employed [HEIS-2001]. In the proposed scheme, warping motion compensation is employed
during temporal filtering. Furthermore, as the video frames have been segmented into several
video objects, different warping motion compensation schemes have been employed for different

video objects.

To help matching every pixel in the target video object, a pre-processing step of padding is
applied to the reference video object planes (VOPs) prior to warping motion estimation and
compensation for arbitrarily-shaped video object. The boundary pixel padding technigue in
MPEG-4 has been employed in the proposed scheme [MPEG4-2001]. Only the pixels of the
current VOP are considered for matching in motion compensation.

7.2.2.1 Temporal filtering of foreground objects using context-adaptive scalable model

Temporal filtering of foreground objects consists of two basic steps: scalable model tracking and

model refinement.

® Scalable model tracking: the scalable model is tracked along the video frames, from the

highest temporal layer to the lowest temporal layer, as shown in Figure 7.7.

Highest layer

3rd layer

|
|
1
: I e
g : L { ¥ 2nd layer
|

| |
I | I I Ty Lowest layer
A48
.1 2584 5 & F 3
GOP k-1 GOP k GOP k+1

Figure 7.7 — Scalable model tracking along the video frames for video object
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For the foreground objects, a context-adaptive scalable mesh model is used during temporal
filtering for motion compensation, which is designed through the algorithms discussed in
detail in Chapter 5. The advantage of using a context-adaptive scalable mesh model is its
high efficiency in representing the object motion. However, compared with the regular
triangular mesh model [WANG-1994a), content-adaptable scalable models require more
computation during model design, Furthermore, more bits are required to compress these
models. In order to reduce the complexity and coding bits in the proposed scheme, only the
scalable models of the foreground objects in an “I-frame” are designed and compressed. For
. the other frames, their scalable models are achieved and updated through tracking. As the

object shape has been encoded before texture coding, only the interior vertices of object
models need to be fracked.

The detailed tracking algorithm is presented as follows, which is similar to the proposed
model evaluation algorithm in Chapter 5:

1 Foreword / backward motion estimation of video object from two frames

In order to estimate the motion of video object, a number of feature points are selected
in the interior of object, which may be different from the interior vertices of the object
model and have good features for tracking [SHI-1994]. Then, both forward and
backward motion vectors of these points between frame I(%,t ~1) and frame I(%,?) are
estimated using Shi-Tomasi feature tracking algorithm in [SHI-1994], which is
indicated by ¥; and V; , respectively.

2 Reliability evaluation

The “reliability” of the estimated motion vectors is evaluated based on both forward

and background motion vectors through Equation (3.3) in Chapter 3 (page 55). The

smaller the difference between ¥, and ¥; , the more reliable the motion vector of i th

node.
3 MYV prediction of model vertices

After achieving the motion vectors of interior feature points, the motion vectors of
model vertices are predicted from their m nearest surrounding motion vectors. m is

chosen as 6 in our experiments. The weighted least squares (WLS) estimation in
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[ROUSS-1987] is also used to determine the affine parameters of motion for the control

points. During estimation, each motion vector is weighed according to its “reliability”.

Unlike the model evaluation algorithm in Chapter S, the proposed model tracking
algorithm does not include object model refinement by iterative hexagonal matching
algorithm in [NAKAYA-1994]. A more detailed scalable model refinement step will be

introduced in the lifting step of temporal filtering.

° Scalable model refinement: The scalable model is refined during the lifting step, from the

lowest temporal layer to the highest temporal layer, as shown in Figure 7.8.
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Figure 7.8 — lifting-based temporal filtering process

Even though the motion of the object model can be derived from above tracking algorithms,
the motion vectors obtained are not optimal due to the update process of the low-pass
frames in the lifting scheme. For example, during temporal filtering of the 2" layer shown
in Figure 7.8, Frame 2 and Frame 6 are first predicted from Frame 0, Frame 4 and Frame 8
as the high-pass temporal frames. Then, Frame 0 and Frame 4 are updated. Due to the
updating step. Frame 0 and Frame 4 are different from those in Figure 7.7, thus the tracked
scalable model is not optimally related to the updated frames. Therefore, a refinement step

is needed in order to get the optimal motion vectors corresponding to the object model.
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Due to the object motion, some pixels of the object have just one correspondence from
either left or right frame. These pixels can be considered as the original terminated pixels,
as shown in Figure 7.5. For example, some newly-appeared pixels in frame n can only be
estimated from frame n+1, as shown in Figure 7.9. Therefore, during model refinement,
optimal prediction model (Bi-directional, Uni-left, or Uni-right models) is also decided. In
the proposed scheme, the optimal prediction mode! is object-based, instead of block-based,

due to the warping motion compensation.

The motion estimation is optimised under rate-distortion criteria, which are shown in

Equation (7.9), (7.10) for different estimation model.

For Uni-left and Uni-right model, the motion vectors are optimised subject to:

MV;F‘ =arg min
MV]eSR,

B(p)-MClay, My 8 My ] Lp)|+ amede . gy YErer pyd )l (7.9)
pENR
g

For Bi-directional model, the motion vectors are optimised subject to:

‘ ; . RV
[ My 8(p)- %(M(’(A, My Neighbor pqy i lp) + MC(A, My Neighbor pgy )kp*
MyoP Be M;:’? esA,
2 MV/€eSR,

| gmode _(R(MV’Neighbm_ MV,f) b R(M,,’Neighbor’ My/ ))

7/

(7.10)

Frame n-1 Frame n Frame n+!

SR 4 -

&)

Figure 7.9 — Illustration of video object along the three consecutive video frames

In Equation (7.9) and (7.10), 8 and 4, (d e {r,1}) are the current frame and reference

frame during motion compensation, respectively. p is the pixel located in the neighbouring

region NR, of current vertex, as shown in Figure 7.10. MV.%' and MV, are the final

estimated motion vectors from the right (forward) and left (backward) motion estimation
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process respectively. MC(Ad,M Pl oty ) is the result of warping motion
compensation process of current frame, given the reference frame and motion vectors of
model vertex and its neighbouring model vertices. R(M y Netehtor My ) is a bit rate term
representing the expected number of bits for encoding the motion vectors MV, given its

neighbouring motion vectors. The search region SR, can be adapted depending on the
temporal layer.

Figure 7.10 - Illustration of neighbouring region MR, and search region SR, of model

vertex

To approximate the optimal solution for the two-dimensional optimisation problem given in
Equation (7.10), we first optimise M¥, using one dimensional optimisation. We then fix
MV, and optimise MV, . By subsequently fixing MV, and re-optimising AV, , this
process can be iteratively continued. During the iteration process, the positions of its

neighbouring vertices are fixed. After the above refinement, the rate-distortion optimised

motion vectors are achieved and will be compressed by using the scalable coding method
presented in Section 7.2.3.

7.2.2.2 Tempeoral filtering of background objects using an adaptive quadrangular mesh

model

For the background object of the video frame, it is assumed that only simple motion occurs,

Therefore, the simple scalable quadrangular mesh model is employed, instead of context-adaptive

scalable model. One of the advantages of using such an adaptive model is that it need not be

compressed and transmitted to the decoder. Furthermore, less computation is required to build the
adaptive quadrangular mesh models of the background objects.
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Figure 7.11 — Warping motion compensation and motion vector interpolation. () Warping motion

compensation and (b) Motion vector interpolation

Figure 7.11 illustrates warping motion compensation (MC) using quadrangular meshes. During
motion estimation (ME), the positions (or motion vectors) of the grid points in the previous frame
are optimised to reduce the warping error between the current frame and the previous frame, It
can be achieved through the iterative hexagonal matching algorithm in [NAKAYA-1994]. For the

points inside each quadrangle, the motion vectors (MV) are linearly interpolated from the four
MVs of the surrounding grid points.

As we know, the drawback of warping MC technique is that it suffers from strong inhomogeneous
motion, e.g. very fast moving objects [OHM-1996], leading to “warping artefact”. Even though
motion discontinuities are reduced through the representation of video frame info objects,
overlapped block motion compensation (OBMC) and an adaptive quadtree grid with variable
density according to the varying motion activity are investigated and incorporated into the

proposed scheme in order to further improve the performance of motion compensation.

OBMC can achieve better prediction by means of a superposition of overlapped displaced blocks
from the reference frame, each weighted by a smooth cosine window [HEIS-2001]. According to
Figure 7.11, the background object of current frame % is divided into squares of 16 by 16, thus
obtaining a regular grid. A dense motion vector field is achieved by using bilinear geometric

transform which smoothly varies over the image. The motion vector M¥; of point (;, j) inside a

square block is interpolated from the four surrounding control point motion vectors MV,

vaey

MV, using the equation (7.11):
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L

dx
)
[ 1-% ~5; +% - %) (7.11)
( ](xi =T yl)

~ X=X ~ il
where X = i 0 -_—..yL...Z-o_

; F (7.12)
X — %o V1= Yo

- and x;, ¥, X, ¥, are the coordinates of four surrounding points, as shown in Figure 7.11 (b).

This warping prediction leads to a motion vector field without motion discontinuities. For high
motion part of background, in order to combat the motion discontinuities, overlapped block

motion compensation is employed by superimposing four predicted intensity values using

mnonlinear weighting functions wy, wy, wy and wy.

51 0)= 3, )y )

~p{""‘s B =% 9+ p5ES (& 5;) (7.13)

+Pmms '(l_xi =P+ 3 -9;)

+ pircms (5\7! iy j‘,')

where

x; El{l—cos(z-xi | )) G4
2 X1 —Xp

, .

Vi -=-l l—cos{n'...__._yi ‘}’OJ (-13)
2| N=Yo

i pnans ‘——‘I(xg +dx;,y; +a'yj,k-1), j=L..,4 ) (7.16)

Thus, the four predicted values p{"™*, p7®, py™ and pj™* are computed by employing

the translational motion model with one of the motion vectors of the four surrounding vertices for
each prediction.
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In order to further improve the motion prediction and achieve scalable coding, an adaptive
quadtree grid is employed. In contrast to the method in [HUANG-1994] which uses the local
variance of a given frame difference as a criterion to decide whether block should be split into
smaller one, the splitting in our proposed scheme is based on the rate-distortion criterion.
Commonly, the use of a regular grid of block size 16x16 pels imposes a severe constraint on the
motion model in highly active and quasi-stationary regions. In order to adapt the motion model to

such kind of scenes, an irregular grid is employed with block sizes of 16x16 and 8x8.

As shown in Figure 7.12, the control points (CPs) in the grid are classified into three types: coarse
grid CP, fine grid CP and boundary vertex (BV). They are defined as follows:

. Coarse grid CP: Control points located at the 16x16 grid, which can move freely.
. Fine grid CP: Conirol pointé located at the 8x8 grid, which can move freely.
. Boundary vertex (BV): control points located at the 8x8 grid and forming a T-

shaped connection with coarser grid CP and fine grid CP. Iis motion vector is just

bilinearly interpolated from the MVs of neighbouring CPs and hence need not be
transmitted.

frame k

4o
¢ coarse grid CP (16x16) ‘A fine grid CP (8x8) W - bound verex (BV) (8x8)

Figure 7.12 — Description of hierarchical control grid interpolation

Iterative hexagonal matching algorithm in [NAKAYA-1994] is used to estimate and refine the
motion vector of the control points. It includes the following steps:

e Motion vector of control points on the grid of size 16x16 is obtained.
° Rate-distortion theory is applied to decide whether the 16x16 block should be split
or not.

@ If the decrease of MSE of 16x16 block is larger than A% -R(AMV ) , the block is
split and a fine grid CP is inserted. Otherwise, it is not split.
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For background objects, only Bi-directional prediction is employed. That is, during the motion

estimation, two motion vectors are estimated for every control point (vertex of a square) from the
adjacent frames, based on rate-distortion criterion. That is, a Lagrange multiplier A***¢ is used to

choose the best control point motion vector, considering the prediction error and the local motion

vector variance between the candidature vector (MV,’ ,MI/',j) and the eight motion vectors

(M p Neleidor af I/,N““‘”"“’) of its neighbouring control points, which is similar to equation (7.10).

To estimate the motion vector of the vertex, the motion vectors of its eight neighbouring control
points are fixed and only the motion vector of the centre conirol point is changed. Because of their
interdependence, the motion vectors are iteratively refined. During the iteration, the control points
are scanned from top left to bottom right of the image. The estimated MVs of the quadrangular
mesh model, together with the overall structure of the grid described by a quadtree, are encoded
progressively, which will be discussed in Section 7.2.3.

7.2.3 Scalable coding of motion vectors

Before scalable coding of motion vectors for foreground and background objects, the scalable
mesh structure of video object is compressed. The detailed technique for the compression of
scalable mesh model has been discussed in Chapter 5, which also indicates the scanning sequence
and layer information of vertices. Based on the frame prediction model, such as bi-directional,
uni-left, and uni-right prediction model, one or two motion vectors are needed for every vertex of
an object model. For background objects, the overall structure of a hierarchical grid can be

described by a quadtrec [HUANG-1994]. In this section, motion vector prediction is discussed,
followed by scalable motion vector coding,

7.2.3.1 Motion vector prediction

For the motion vector prediction of the foreground objects, the motion vector prediction method is
similar to the prediction method for scalable model compression discussed in Chapter 5. For the
vertices in the first layer, motion vectors are predicted from the preceding vertex based on the pre-
decided connectivity during scalable model compression. For other layers, the motion vector of
the vertex is predicted from its two neighbouring vertices of the current layer and/or the

previously coded layers, according to the pre-determined connectivity information.
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The motion vector prediction of background objects is different from that of foreground objects.
The scanning sequence during motion vector prediction is from upper left to bottom right. Based
on the hierarchical control grid in Figure 7.12, the motion vector of the vertex in current layer can
be predicted from the neighbouring vertices of the previously encoded layers and the vertices the
current layer which have already been encoded, as shown in Figure 7.13.

Assume that the fine grid control points (CPs) belong to a different layer from the coatse grid
CPs, The coarse grid CP is predicted from its neighbouring encoded vertices, as shown in Figure
7.13 (). For example, CP, is predicted from CP, and CP,. The fine grid CP is predicted from its
neighbouring coarse grid CPs, neighbouring bound vertex, and encoded fine grid CPs. For
example, in Figure 7.13 (b), fine grid CP, is predicted from CP,, CF; and CP,. While fine grid

CP, is predicted from CP,, CP, and CF;. As the motion vector of boundary vertex (BV) is

bilinearly interpolated from the MVs of neighbouring CPs, it need not be compressed and
transmitted to the decoder.

& coarse grid CP (16x18) & fine'grid CP '(81{8)' l 3 _bouhd \'feltéx(BV)_‘(Bxs)

Figure 7.13 —Tlustration of motion vector prediction for a background object

7.2.3.2 Scalable coding

In MPEG4 and H.263, the differential MV components are encoded using adaptive arithmetic
coding (AAC), described by Witten et al [WITTEN-1987]. In these standards, one probability
model is used for all the motion vector symbols in a given frame and updated adaptively at the
encoder and decoder. As the number of symbol increases, this scheme faces the zero frequency

problem, i.e, even the unused symbols must be assigned some initial probability.

In order to improve the coding efficiency of MV prediction errors, H.264 adopted context-
adaptive binary arithmetic codec (CABAC) [H264-2003], which is also employed for scalable
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motion vector coding of our proposed scheme. This method consists of two steps: binarization and
binary coding. In the binarization step, each motion vector symbol is represented by a unique
binary pattern as shown in Table 7.1. The resulting code words are then encoded using a binary

arithmetic coder and context model according to Table 7.2.

Table 7.1 — Binarization of motion vector prediction residual component

Prediction residual component Binary code
0 1
+/-0.25 01
+-0.5 oot
+/-0.75 0001
Bin number 12345

Table 7.2 — Bin numbers and corresponding context number for binarised residual motion vector
components

Bin number Context number
1 CTX°(dE)e{0,1,2}
2 3
3 4
4, 5,6, 5
Sign 6

Motion vector differences are prediction residuals, for which a context model is established in

CABAC that is based on the local prediction error. Let mvd(X,cmp) denotes the value of a
motion vector difference component of direction cmp < (horizontal, vertical}. Then, the related
context for encoding the first bin is determined by its preceding neighbour (for layer 0) or
neighbours (for other layers). Three different context models CTX c(a’E‘) are selected depending
on the motion vector residuals of the neighbouring conirol points, which have been scanned and

encoded. Let ¢ e {x,} denote the vector component. Then, CTX® (dE) is defined as follows:

0, e°(dE)<2

CTX°(dE)=11, e°(dE)>8 (7.17)
2, else
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where e(dE)= ZldAil and i is the number of its neighbours.
i

7.2.4 Rate-distortion optimised bit stream truncation

After temporal filtering of arbitrarily shaped video object, scalable motion vector coding is
- conducted using the method in Section 7.2.3, and the residual texture images are encoded by the
improved shape-adaptive SPECK algorithm which has been discussed in Chapter 6. After the

encoding process, the compressed bitstream can be further truncated at a later stage to form a fully
scalable bitstream in the temporal and quality level.

In the proposed scheme, rate-distortion optimised bit truncation scheme used in JPEG2000
[TPEG-2000] has been extended to decide the optimal truncation points of the bit stream. Based
on the rate distortion data of all video objects and the given available bit rate, the optimal
truncation points can be decided within each GOP. During temporal filtering, the warping error

D,-l'j"“’ and the expected number of bits R,-I'j""' for object ¢ in motion layer j,, of frame / are
recoded. At the same time, for residual texture bit-plane coding, the coding rate R:’j"’ and

distortion D:'j’" for object i in bit plane j,, of frame / are also recoded.

Based on rate-distortion theory, the coding performance of each video object { (including motion
and residual texture for video coding) is characterised by a rate-distortion curve. Therefore,

optimal trade-off between rate and distortion can be achieved by minimising:

J=%= ;;;(D,’" + Ay R (7.18)

where j e {jm, j,p} and is selected from the candidature truncation points., Lagrange parameters

{A, ".} are chosen for all temporal frames and video objects. If only one frame is encoded and each

block is considered as one video object, Equation (7.18) can be simplified as the rate-distortion
optimisation criterion used in EBCOT algorithm [TAUB-2000].

Given a specific bit-rate R, ., the objective of bit truncation is to find the optimal truncation

point so that ZZZR,' J 2R, » and construct a bit stream that satisfies the bit-rate constraint and
Lt .J

with minimal distortion. Before deciding the optimal truncation points, we should select the
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candidature truncation points so that we can find a convex hull of the R—D curve. The
truncation can only take place at these candidate truncation points so as to guarantee that at every
truncation point, the bitstream is rate-distortion optimised. For object i, the end of each MV layer

is the feasible truncation points followed by the feasible truncation points that are Jocated at the
end of each coding pass for texture coding.

Let jo < jj <++< jy.; be an enumeration of these feasible truncation points for object i in frame

1, where {jq,j1> s Ji} € jpy and {jk“,j“z,---,jN_l}ejsp. Let the comresponding distortion

rate “slope” be given by:

Si* =ADJ* 7 AR/ (7.19)

where AR/* = R/t — R/ and AD/* = DJ++ — D},

Evidently, the slopes must be strictly decreasing, If S,-""+l > S{" , the truncation point j, could

never be selected as the candidature truncation points. After selection, the number of candidature

truncation points is N .

After determining the candidature truncation points for all video objects and all frames within

current GOP, the determination of optimal truncation points #; = {n?,n},---,n,‘“ }, for any given

ﬂ,f » may be performed very efficiently. Due to the restriction of the set of candidature truncation

points whose slopes are strictly decreasing, the algorithm for determining optimal truncation

points is reduced to the selection of #; so that its component
nl = max{ik e N} |s,¥'fk > ,1}, and 0</<K. (7.20)

Suppose there are O.objects in the frames and K frames in current GOP, Then, the detailed
algorithm for determining truncating points is described as follows:

1. Construct the rate vector §={R§‘j |Osi<0,0$I<K,OSj<N,!} and slope vector

8§ = {S‘,” | 0<i<0,0<I<K,0< j< N} } for all candidature truncation points. Therefore,

0-1K-1
for rate and slope vector, there are intotal N= ' Y N elements.
i=0 I=0
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2. Rank the elements of §= {S,’J ] and adjust the element sequence of rate vector

correspondingly so that 5={So,--',S}-_,,Sj,Sj+l---,SN_I} and S, £S;<S5;,. The

corresponding rate vector is R = {Ro,---,Rj_l,Rj,RjH -~-,RN_]}.

a . - - "_1 B
3. Decide the truncation point # based on rate vector R so that ¥ R; <R, < LR; -
* i=0 i=0

4. Retrieving the optimal truncation points N ={n°,n},---,n,-K" |0.<_i<0} for all video

objects and all frames with current GOP from the selected # elements of rate and slope
vectors in step 3.

After deciding the optimal truncation points, the bit number R,{‘j and the slopeS!'j for each

jen! are kept in the header along with the embedded bit stream.

The proposed rate truncation scheme can easily achieve temporal, quality and object scalabilities.
Since the video objects are encoded independently, the bitstream of video objects is separable.
The decoder can easily exiract special video objects and decode them, so the manipulation of
video object is natural. Furthermore, as the video frames are encoded independently, temporal

~ scalability can be easily achieved by throwing the bits from all video objects of high temporal
level frames.

To achieve quality scalability, a multi-layer bitstream is formed and each layer indicates a certain

quality level. To make a N -layer bitstream, we first select Z} § >ﬂfj >-~->/Iﬁ; which satisfy
N

ZZRﬁ" < Rya - With every threshold, a truncation point and a layer of bitstream can be

R

achieved for each video object. The corresponding layers from all video frames and all video
objects constitute the layers of the final bitstream. According to the available bandwidth and the
computation capacity, the decoder can select first few layers to be decoded. The bit-plane coding

and multiple video objects ensure that the bitsiream is embedded with fine granularity.

Above algorithm can also be used to achieve object scalability easily by allocating the bits among
different objects optimally. The rate-distortion theory indicates that optimal coding performance
can be achieved if all of the video objects operate on the same R-D curve. The functionality of the

algorithm is thus to find the common rate-distortion slope of all video objects, and calculate the
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number of included bits for each object. The final bitstream consists of the truncated block
bitstream and the bitstream length of each video object.

Above algorithm can also achieve rate control among the video objects easily. Since each object
and each frame in the GOP are encoded independently, the bitstream of each object is separable.
The decoder can easily extract only a few video objects and decode them. For example, if we are

more interested in some special video objects, we can assign smaller Lagrange multipliers 4;; to
these video objects according to their importance during R-D optimization for multiple video
objects, and code these regions by operating at points of less negative slope on the D(R) curve.

Less interesting regions are assigned larger Lagrange multipliers so that the operating points on
the D(R) curve have more negative slopes.

In general, according to the requirement of applications, the final bitstream can be constructed in
order to meet the requirement. The preceding multi-layer bitstream construction method enables
the bitstream with quality scalability. To obtain resolution or temporal (frame rate) scalability, the

bitstream can be assembled subband-by-subband, with the lower resolution or low temporal
subband in the beginning. Moreover, as the bit number Ril'j and the slope Si"j for each je n,{ are

included in the header of the bitstream, the final bitstream can be rearranged to meet further

requirements. This property makes the final bitstream very flexible to be reused for all sorts of
applications without re-encoding them.

7.3 Experimental results

The proposed scalable 2D model-based texture coding scheme has been fully implemented. Its
performance has been investigated and compared with state-of-the-art video coding standards,
H.264 [H264-2003] and MPEG4 [MPEG4-2001]. Currently, H.264 is the best available video
codec, which can match the best possible MPEG-2 quality at up to half the data rate. H.264 also
delivers excellent video quality across the entire bandwidth spectrum - from 3G to HD and
everything in between (from 40 Kbps to upwards of 10 Mbps). However, H.264 does not support
object-based video coding. MPEG-4 can support both frame-based and object-based video coding.

Therefore, these two available codecs are selected during experiments.
In order to compare the performance of the proposed scheme with H. 264, the video frame is

segmented into two video objects: one foreground object and one background object. Two video

objects are encoded and decoded separately, and then used to reconstruct the decoded video

203




Chapter 7. Scalable 2D model-based texture inter-coding

frame. This coding process is named as frame-based texture coding. If only one video object is

encoded and decoded so as to compare it with the object-based coding of MPEGH4, this coding
process is named as object-based texture coding.

7.3.1 Comparison with MPEG-4 and H. 264 for frame-based texture coding

Extensive experiments have been conducted to evaluate the performance of the proposed scalable
2D model-based texture coding scheme for frame-based texture coding, and compare it with that
of MPEG-4 and H 264 standards. Three test video clips, including Coastguard, News, and
Motr_dhir sequence in QCIF resolution (with 10 fps, 160 frames), were used in the experiments.
For MPEG-4, Microsoft version is employed. For H. 264, version JM82 is applied. During the

tests, rate control is enabled for both MPEG-4 and H. 264. For MPEG-4, TMS5 is selected as the
rate control method.

Figure 7.14 illustrates the PSNR performance of Y-component for different encoding bit rates.
Readers are reminded that the experimental results presented here for each sequence are decoded
from a single embedded bitstream for the proposed encoding method and from different
bitstreams corresponding to individual target coding rates for MPEG4 and H. 264. From the
results, it is found that the proposed method is 1 - 4 dB superior to the MPEG-4 coder for a wide
range of bit rates. When compared with H.264, the proposed scheme can achieve better
compression performance at the low bit rate. However, it is inferior to H. 264 at medium and high
bit rates. The success is due to the use of scalable MV coding in the proposed scheme. When the
target bit rate is very low, which is not enough to encode the full MV information, only the first
MYV layers are encoded and some bits are saved to encode the first frame of GOP. In the proposed
scheme, the amount of bits used for encoding MV information is decided automatically by the
rate-distortion optimised bit truncation algorithm discussed in Section 7.2.4, Most importantly, the
proposed scheme can achieve highly scalable bit stream, which is important for the new
applications such as UMA. It can achieve temporal, object and quality scalabilities

simultaneously.

Regarding to the computational complexity, the proposed scheme has higher complexity than
MPEG-4 and H.264 due to the video segmentation, object modelling and MC-based temporal

filtering. During texture coding, the complexity of MC-based temporal filtering is larger than
ME/MC in MPEG-4 and H.264 as mesh-based motion estimation and compensation is employed.
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Figure 7.14 — PSNR performance comparison for Y-component of (a) Coastguard: (b) News: and

(c) Motr_dhtr sequence

Figure 7.15 shows the decoded video frames for MPEG-4, the proposed scheme and H. 264. It is
shown that MPEG-4 produces visually annoying blocking artefacts. The decoded images through

the proposed scheme and H. 264 have better subjective performance.

Y e M |

MIEGH i MPEGS
WORI D 'y b \ WORLD

(b)

206



Chapter 7. Scalable 2D model-based texture inter-coding

Figure 7.15 — Encoding performance comparison for (a) Coastguard with 128kbits/s; (b) News
with 64kbits/s; and (c) Motr_dhtr sequence with 64kbits/s. The left image is encoded by MPEG-4.

The middle image is encoded by our proposed scheme. The right one is encoded by H. 264

encoder

Figure 7.16 shows the PSNR distribution of Y component for Coastguard sequence under the bit
rate of 128kbits/s, as well as the results of MPEG-4 and H.264 codec (for MPEG-4 and H.264, the
actual bit rate is 128.17 kbits/s, 133kbits/s respectively).

Figure 7.17 shows the PSNR distribution of Y component for News sequence under the bit rate of
64kbits/s, as well as the results of MPEG-4 and H.264 (for MPEG-4 and H.264, the actual bit rate
is 64.16 kbits/s, 67.97 kbits/s respectively).
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Figure 7.16 — PSNR pertformance (Y component) of H.264, MPEG-4 and the proposed scheme
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Figure 7.17 — PSNR performance (Y component) of H.264, MPEG-4 and the proposed scheme

Figure 7.18 shows the PSNR distribution of Y component for Motr_dhtr sequence under the bit
rate of 64kbits/s, as well as the results of MPEG-4 and H.264 codec (for MPEG-4 and H.264, the
actual bit rate is 64.12 kbits/s, 68.36 kbits/s respectively).
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Figure 7.18 — PSNR performance (Y component) of H.264, MPEG-4 and the proposed scheme
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7.3.2 Comparison with MPEG-4 for object-based texture coding

The proposed algorithm is compared with an MPEG-4 coder that uses object-based texture
coding. Four test video clips with 100 frames are used: Claire, Motr_dhtr, News, and Foreman
sequence in QCIF (10fps). For each test sequence, only the foreground video object is encoded.
During test, “MP4” rate control model is selected for MPEG-4, which is the only model to
support object-based video coding.

Figure 7.19 shows the PSNR values for Y component at different coding bitrates for MPEG-4 and
the proposed scheme. It is shown that the proposed coder outperforms MPEG-4 (object-based) by
1-2dB while providing desirable multi-rate features. The experimental results presented here for
each sequence are decoded from a single embedded bitstream for the proposed encoding method

and from different bitstreams corresponding to individual target coding rates for MPEG-4.

Figure 7.20 shows the performance comparison for different video objects under different video
encoding rates. The left image is encoded by MPEG-4. The right one is encoded by the proposed

scheme. It can be shown that our proposed scheme can achieve better visual performance.
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Figure 7.19 — PSNR performance comparison for Y-component of (a) Claire; (b) Foreman; (¢)
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Figure 7.20 — Encoding performance comparison for: (a) Claire with 24kbits/s; (b) Foreman with
48kbits/s; (c) Motr_dhtr with 24kbits/s and (d) News with 48kbits/s. (Left) MPEG-4; (right) the

proposed method
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Figure 7.21 — Complexity and bit usage of the proposed scalable 2-D model-based video coding

scheme

The complexity and the bit usage of each component in the whole video coding system have also
been evaluated. Figure 7.21 shows the complexity and bit usage of the proposed scalable 2D

model-based video coding system for Motr_dhtr sequence. Currently, video segmentation is a
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time-consuming part of the proposed system. It almost occupies 40% computation complexity.
Figure 7.21 (a) shows the average proportion of the computational time for the system. However,
video segmentation is not included here. It is shown that speeding the MCTF is necessary to
achieve real-time video compression. Figure 7.21 (b) shows the bit usage of the components in the
proposed system Motr_dhir sequence under bit rate 32 kbits/s. It is shown that only few
percentages (7.2%) of the total bits are used for scalable model and shape compression.

7.4 Conclusions

This chapter presents a scalable 2D model-based texture coding scheme. We first reviewed some
scalable video coding methods, some of which have just emerged for the proposal of MPEG

scalable video coding (SVC). The properties and limitations of these techniques are also
mentioned.

In order to avoid the disadvantages of existing techniques, we proposed a scalable 2D model-
based texture coding scheme. In the proposed scheme, video sequence is first segmented into
several video objects with different motion patterns. This makes the temporal filtering easy for the
occlusions and the newly appeared patches. The foreground video object is represented by 3-layer
scalable content-adaptive object model before texfure encoding. The background object is
represented by adaptive quadrangular mesh. In the proposed texture coding technique, warping
motion compensated temporal filtering is conducted before wavelet-based residual image coding,
An improved shape-adaptive SPECK algorithm is used to code the “I-frame” and residual frames.
After encoding the motion vectors and texture frames progressively, the bit allocation and optimal
truncation scheme in EBCOT algorithm have been extended to facilitate bit allocation among

video objects, among video frames and among motion and texture components within GOP.

The experimental results show that the proposed scalable 2D model-based texture coding scheme
outperforms the nonscalable MPEG-4 standard in both objective and subjective evaluation over a
wide range of bitrates and for both frame-based and object-based texture coding. Although its
performance is inferior to H.264 standard in middle to high bit. rate ranges, the proposed scheme
is superior to H.264 for the low bit rate coding, due to the scalable coding of motion vectors. Most
importantly, the proposed scheme provides highly scalable bit stream, which can achieve
temporal, quality and object scalabilities simultaneously. This property is very important for
achieving new functionalities, such as Universal Multimedia Access (UMA).
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Chapter 8

Conclusions

We round off the thesis with a summary of contributions of this work and some directions for
future research.

8.1 Contributions of the Thesis

The overall goal of this research work is to design a scalable 2D model-based video coding

system. The original work is set out in Chapters 2-7. The main contributions of the research are
summarised below:

» A novel scalable 2D model-based video coding system is presented in this thesis. The
proposed system consists of video segmentation and object modelling (including face
detection and modelling), scalable model compression and scalable texture compression.
The proposed system is capable of achieving scalable video coding with good compression

performance at very low bit rates. It can also achieve temporal, quality and object
scalability simultaneously,

e A new video segmentation scheme targeted at reducing human interaction during video
segmentation is presented in Chapter 3, which is based on the proposed complexity-scalable
contour fracking algorithm. First, watershed transform is used to segment the video frame
into uniform and homogeneous patches with respect to colour. The motion and user input
information is used to merge the paiches into objects with semantic meaning. Next,
subsequent frames are segmented by using the proposed contour tracking algorithms. It is
experimentally demonstrated that the proposed contour tracking algorithm is robust for
tracking the object contour with non-rigid and large motion, even with partial occlusion.
The tracking results of each step can be used for some special applications with different
accuracy requirements. As object motion and texture are used in different steps of tracking

process, the proposed algorithm can be considered as a hybrid feature-based, texture-based
and contour-based tracking algorithm.
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A robust face detection and facial feature extraction scheme is presented in Chapter 4. This
scheme unitises the luminance-adaptive skin colour model and Bayesian detection /
relaxation for face extraction, which makes face extraction robust to different skin colour
and lighting conditions. After localising the human face, a simple and reliable facial feature
detection scheme is developed for eye and mouth detection. A robust chin detection
algorithm is also proposed with the combination of active snake with prior shape model. In
the chin detection algorithm, gradient vector flow (GVF) of a binary edge map is used as
the external force of active snake model, which can enlarge the convergence range.
Experimental results show that the prior shape model can improve the robustness against
the weak chin edges and partial occlusion. After facial feature extraction, a heuristic face
modeling scheme is developed using the detected facial features and facial muscular
distribution. The experimental results show that a priori knowledge of human face can

improve the accuracy of 2D model design and motion representation.

New ealgorithms for scalable shape coding are presented in Chapter 5, which include
scalable shape representation, scalable intra-shape coding and scalable predictive shape
coding. In both shape representation and coding, curvature scale space (CSS) image is
employed to detect the salient feature of object contour and to estimate the contour motion,
For scalable shape representation, the proposed algorithm can achieve up to 20-80% of the
total number of vertices for lossless reconstruction of test video objects when compared
with the state-of-the-art methods [GERKIN-1997] [JORDAN-1998] {MELNIKOV-2000b].
For scalable intra shape coding, the proposed coder exhibits excellent compression
performance for both lossy and lossless shape coding as compared to both state-of-the-art
vertex-based shape coding algorithms and CAE algorithm in MPEG-4. For example, the
proposed intra-shape coding scheme can provide 25-60% gain in bit rate over the scalable
encoding method in [JORDAN-1998], and it can achieve 5-10% gain over conventional
non-scalable vertex-based coding [CONNELL-1997] in bit rate. For scalable predictive
shape coding, motion compensation in the coarser layers and intra-coding for the finest
layer can improve the compression performance further. The reasons for the success of our
proposed scalable shape coding algorithms are:

1. The intrinsic image grid quantisation is taken into account during the contour

approximation, which can reduce up to 30-80% the number of approximating

vertices for lossless representation.
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CSS image is used to detect the salient feature of object contour and used to

match the contours during motion estimation;

3. During shape coding, the information of the encoded coarser layers are employed
to encode the vertices of the current layer.

An improved shape-adaptive SPECK algorithm is proposed in Chapter 6. SPECK algorithm
is an efficient wavelet-based image coding algorithm and it has been extended successfully
for arbitrarily shaped texture coding [LU-2001]. In our research, the improvement of shape
adaptive SPECK algorithm focuses on the two aspects: aggressive discarding of transparent
regions and employing CABAC coder to compress the significance map, refinement
information, and sign information. An improvement over the state-of-the-art algorithms in

the literature, such as SA-SPIHT and the original SA-SPECK, is exhibited in extensive
simulation resulis,

A new highly scalable 2D model-based texture coding scheme is presented in Chapter 7.
We demonstrate in the experimental results that a variety of coding bit rates and temporal
resolution can be decoded from a single compressed file using the new scalable coding
method. It is demonstrated that no blocking artefact is encountered even with very low bit
rate coding as the warping motion compensation, together with the scalable object model, is
employed. It is further demonstrated that scalable motion vector coding can achieve better
compression performance at very low bit rates. The proposed scheme can achieve high
scalability without a significant loss in compression when compared with H. 264. Its

performance is superior to MPEG-4 objectively and subjectively, in both frame-based and
object-based video coding.

The designed scalable 2D model-based texture coding scheme possesses the following
desirable properties:

1. Free from DCT blocking artefacts due to the warping motion compensation and
wavelet analysis. The decoded texture does not show the annoying blocking
artefacts of DCT coding, even at very low bit rates.

2. Error resilience: Error propagation in the proposed scheme is limited by the
length of the temporal synthesis filters. This is the advantage of employing
lifting-based temporal filtering technique.
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3.  Excellent compression efficiency: The redundancy in the source video is
efficiently reduced by temporal filtering with warping motion compensation of
video objects. The representation of video frames into video objects also
improves the motion compensation. The subband correlation can be effectively
exploited through the improved shape-adaptive SPECK algorithm. The
experimental results show that the proposed coding system outperforms the
nonscalable standard MPEG-4 coder over a wide range of bitrates in PSNR

performance. Its performance is also comparable to H.264 at very low bit rates
(<10kbits/s).

4.  Flexible and highly scalable bit streams: The proposed scalable texture coding
system can accommodate a wide variety of scalable functionalities utilising the
multi-resolution nature innate in temporal and spatial subband filtering. Most
importantly, these desirable scalable features are provided without a significant
performance loss when compared with H.264, which is commonly seen in

traditional hybrid coding for scalable applications.

8.2 Future Research Directions

This section describes some possibilities for further development and research, and outlines the

author’s view of the future development of scalable model-based video coding. Some suggestions
for future work are given below:

The more immediate research activities can be carried out with the video segmentation
described in Chapter 3. Here, a novel video segmentation approach is proposed, which is
based on a complexity-scalable contour tracking scheme. Intensive experiments have been

conducted to prove the efficiency of this approach. However, video segmentation technique
is still immature. Future research can be focused on:

1. Inorder to reduce the human interaction for the initial object contour and improve
the segmentation efficiency, more sophisticated mathematical methods, such as
Graph cut [BOYKOV-2001], Markov random field [GEMAN-1984], and Level
sets algorithm [PARAG-2000], can be investigated and employed.
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2. For the contour tracking of the subsequent frames, particle filtering, Level scts
and Bayesian network are the possible techniques to incorporate into the
proposed algorithm and thus improve the accuracy and robustness of contour
tracking. Furthermore, multiple object segmentation and tracking is also one of
the interesting topics for future research.

3. TFuture research is necessary for performance evaluation, both objectively and
subjectively, of video segmentation. Although some research has been conducted

[WOLLBORN-1998] [CORREIA-2003], a satisfying solution is not yet available
in the literature.

These research topics have been included as part of our current research tasks in EU
VISNET project (www.visnet-noe.org).

Chapter 4 discusses the issues regarding face detection and scalable modelling, This work
can be extended to 3D domain. The main future research will be head modelling from a
single video sequence, as well as the 3D head model transmission. One idea is that face
model is constructed from the first several frames, which are encoded using traditional
object-based video coding techniques. Then the subsequent frames are encoded using the
3D model-based video coding technique. To achieve this, for example, shape-adaptive face
texture and shape information from the first several frames is encoded and transmitted to
the decoder. Then, content-adaptive 3D face model is constructed by both encoder and
decoder. The constructed 3D face model is used to compensate the face motion in the
subsequent frames. In this way, only 2D shape and texture need to be sent. Furthermore, the

use of content-adaptive 3D face model can avoid the computationally complex step of 3D
face model adaptation,

Chapter 5 examines the issues related to scalable shape coding and scalable model
compression. For shape coding, the generated bit siream is very sensitive to the channel
error during coding. Although scalable shape coding can improve its robustness against
channel error through unequal error protection (UEP), the investigation of error
concealment techniques is necessary. Currently, some research has been conducted for intra
error concealment of shape information [SHIRANI-2000] [SOARES-2004]. However, it is
possible to use the correctly decoded object shape in the previous frames to cancel the shape
error in the current frame, that is, to employ temporal information for error concealment.

Not much research has been conducted in this topic. Furthermore, for scalable shape
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coding, the correctly decoded coarser layers can also be employed to conceal the error in
the current layer.

Chapter 6 mainly investigates the scalable intra texture coding of arbitrarily shaped video
objects. An improved shape-adaptive SPECK algorithm is proposed for high compression
efficiency. Experimental results verify the improvement. However, as demonstrated in
Figure 6.6, a variety of statistical dependencies can be observed in the dual pyramidal
structure established from quadtree representations of a decomposed image. The context
modelling scheme presented in this work (Section 6.6) for exploitation of such statistical
redundancies is primarily based on some local texture features. It is expected that improved
compression can be achieved further by more sophisticated context modelling strategies,
e.g., advanced context selection and quantisation methods in [WU-1997]. Furthermore, both
“I-frame” and the residual frames are currently encoded using the same context model.

Further research can improve the coding performance by introducing different context
models for different temporal frames.

Scalable 2D model-based texture coding is discussed in Chapter 7. At the current stage,
dyadic subband decomposition and a fixed GOP size have been employed during temporal -
filtering. Such a subband structure may not be efficient for image sequence with low
temporal correlation. Further improvement of encoding performance can be made by
adopting adaptive subband decomposition structure and variable GOP size. Moreover,
further research can be conducted for joint source-channel coding related to model-based

source codec. Very little work has been performed that looks at the joint source-channel
coding related to model-based video codec.
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Appendix B

B.1 Shape-adaptive discrete wavelet transform

Assuming odd symmetric biorthogonal wavelet filters with Lg(0dd) taps for the low-pass

filter and Lj (odd) taps for the high-pass filter, let the low-pass analysis filter taps be
g(i). i=0,--,L, ~1 and the high-pass analysis filter taps be Ix(i),i =0,--+,Ly ~1. They have

the following properties:
gl)=glLg -1-i) for i=0,-,(L, -1)/2 B_L1)
B =Ly, —1-i), for i=0,-,(L; -1)/2 B _12)

Let the low-pass synthesis filter be g{i), then

g)= 06, for i=0,-,1; ~1 (B_1.3)

Let the high-pass synthesis filter be % (z'), then
A(@)=(1) g0), for 1=0,,L, -1 (B_14)
The analysis filiering process is given by:

L,-1
() = 2 i+ j-(zg-1)2)e{z, —1- j) Low pass) (B_1.5)
e

L,-1
$G)= $ xG+j-(L, -1/ 2k, ~1- j) WHigh pass) B_1.6)
=0

where 7(f) and S(i) are the low-pass and high-pass band filter outputs before subsampling,

respectively:

The wavelet coefficients from the analysis are obtained by subsampling the above filtering
results by a factor of two. Subsampling can be at either even position or odd positions.
However, in order to use the symmetric extensions, the subsampling of low-pass coefficients

and that of high-pass coefficients always have one sample shift. If the subsampling positions
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of low-pass coefficients are even, then the sub-sampling positions of high-pass coefficient
should be odd, or vice versa.

The subsampling process is described as follows:
C(i)=1(2i-5) ®B_1.7)
D(i)=s(2i+1-5) (B_1.8)

The subsampling of high-pass coefficients always has one sample advance.

To perform synthesis, these coefficients are first upsampled by a factor of two. The

upsampling process is given as follow:
PQi-s)=C()  PQRi+1-5)=0; (B_1.9)
0Qi+1-5)=D() Q(2i+s5)=0; (B_1.10)

where P(k) and Q(k) are upsampled low-pass and high-pass coefficients, respectively. Then

the synthests filtering process is given as follows:

L,~1
ufi)= § P+ j—(Ly -1)72)g(Ly, —1~ j) (Low pass) (B_1.11)
j=0

L '
vi)= éo i+ j-(Lg ~1)r2Ji(Lg -1~ j) igh pass) ®B_1.12)

(@)= u(i)+v(F) | (B_1.13)

where (i) is the reconstructed signal.
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B.2 SA-SPIHT Algorithm

The SA-SPIHT algorithm can be summarised as follows:

H =roots of the spatial orientation trees

O, j) = offsprings of pixel (7, 7).

D(i, j) = descendants of pixel (i, j).

L(:.4) = DG, j)-0G, ).

Sy (T) = significance of set T' w-r-t #, 1 means significant, 0 means insignificant.

1. Initiglisation

output n=|__log2(max(,-, j){c,-, J|})J » where ¢;; is the wavelet coefficient of
point(;, /)
set LSP=¢

set LIP=(i, j}e H if (i, j) is within the object

L

set LIS =(i, j)e H if (i, j) is within the object and with descendants

2. Sorting Pass
(a) for each (i, j)e LIP,
e output S,,(i, j)

o if 8,0, /)=1, move 7) to LSP and output the sign of ci, j

(b) for each (i, j)e LIS, if (;, j)e Type 4
o output S, (D, 1))
o if 5,06, 1)=1
— foreach (k,0)e O(, j) and (k,!)e shape mask
o  output S, (k)
o if 8,(k2)=1,add (k,7) to LSP and output its sign
o if §,(k)=0,add (k) to LIP
— if L{i,j)=¢ , remove (/) from LIS , otherwise change (i, /) to
Type B

o if (i, j)e Type B and (t, j)e shape mask
— output S, (L(i, j));
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~ if §,(L{,7)=1, add each (k,1)e O, j) to LIS as Type 4 entry,
remove (f, /) from LIS

3. Refinement Pass

For each (7, j) e LSP, except hose included in the latest sorting pass, output the » th
MSB of |c; ;|

4. Quantisation Update Step
Decrement n by 1 and go back to step 2.
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B.3 SA-SPECK Algorithm

The SA-SPECK algorithm can be summarised as follow:

3

3

Initialisation

* partition image transform X into two sets: S =700f and I =X -8 (see Figure
6.8(2))

output » = [logz(v m chi,j I]J

add S to LIS
set LSP=¢

¢ set max lengthinLIS =length(S)

Sorting Pass

o forl=1 to l=maxlengthLIS

— foreach § e LIS, with Iength(S)=I and S & shape mask ,
o Pr ocessS(S)
o ProcessI( )

Refinement Pass
e foreach (i, j) € LSP , except those included in the last sorting pass, output the
nth MSB of |c, |

Quantisation Step Update
Decrement n by 1 and go back to step 2.

The functions Pr ocessS(S), CodeS(S), ProcessI( ) and Codel () are presented below:

Function Pr ocessS(S):

output S, (S)

if 8, (s)=1

— if § isa pixel
o outputsign of S
o add § toLSP

—  else

o CodeS(S)
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- if Sells

o remove § from LIS

» else

— if S¢LIS,add S to LIS

Function CodeS(S):
e partition § into four equal subsets O(S)(see Figure 6.8 (b))
e for each O(S)e shape mask
— outpuf §, (O(S))
- if §,(0(8)=1
o if O(S) is a pixel
v output sign of O(S)
v add O(S)to LSP
o else
v CodeS(O(S))
— else

o add O(S)to LIS

- Function ProcessI{ ):
= output S,{I)

o if §,()=1
~  Codel( )
Function Codel ( ):

¢ partition  into four sets: three § and one I (sec Figure 6.8 (c))

e for each of three sets §
—  if length(S)> max lengthinLIS
o maxlengthinLIS = length(S)
—  ProcessS(S)
* Processi( )
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B.4 Context tables of improved shape adaptive SPECK algorithm

Table B_4.1 — Look-up table for significant coding of each quadtree node

LL, LH ,and HL bands HH bands
Label | P H vV | HV D | Label P H 14 HV D
0 0 0 0 0 X 0 0 0 0 0 X
0 0 X X 1 <3 0 0 X X 1 <3
1 0 X X 1 =3 1 0 X X 1 23
1 0 X X 2 X 1 0 X X 2 X
2 0 X X >2 X 2 0 X X >2 X
3 1 0 0 0 1 3 1 0 0 0 1
4 1 0 0 0 >1 4 1 0 0 0 >1
4 1 0 1 1 X 4 1 X X 1 <3
5 1 1 0 1 X 4 1 1 1 2 <2
6 1 X X 2 X 5 i X X i >3
7 1 X X >2 X 5 1 0 2 2 X
5 1 2 0 2 X
5 1 1 1 2 22
6 1 X X >2 X
Table B_4.2 — Contribution from the horizontal neighbours
W E h
Significant, + Significant, + 1
Significant, - Significant, + 0
Insignificant Significant, + 1
Significant, + Significant, - 0
Significant, - Significant, - -1
Insignificant Significant, + -1
Sipnificant, + Insignificant 1
Significant, - Insignificant -1
Insignificant Insignificant 0
{
Table B_4.3 — Look-up table for sign coding
h v dys di3s P4 Label
1 1 X X 1 4
1 0 X X 1 3
1 -1 X X 1 2
0 1 X X -1 1
0 0 0 1] 1 0
0 -1 X X 1 1
-1 1 X p:3 -1 2
-1 0 X X -1 3
-1 -1 X X -1 4

228



Table B_4.4 — Look-up table for context selection in refinement coding of significant

coefficients
LL, LH ,and HL bands HH bands
Label HYP Label -~ HVP?
0 0 0 0
1 <3 1 >0
2 =3
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Appendix C

List of Abbreviations

AVO’s

B-VOPs

BTBC
BV
CABAC
CAE
CIF
CODWT
CPs
CSS
DCT
DFD
DWT

EBCOT

EOQL

EZBC

Two-dimensional
Three-dimensional
Adaptive Arithmetic Coding
Arbitrary Region-Of-Support
Audio-Visual Objects
Bi-directional VOPs
bit per pixel
Background To Be Covered
Boundary Vertex
Context-Adaptive Binary Arithmetic Codec
Context-based Arithmetic Encoding
Common Intermediate Format
Complete to Overcomplete Discrete Wavelet Transform
Control Points
Curvature Scale Space
Discrete Cosine Transform
Displaced Frame Difference
Discrete Wavelet Transform
Embedded Block Coding with Optimised Truncation
Expectation Maximization
End-of-layer

Embedded Zero Block Coding
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EZW
FAP's
FB
FEC
FGS
FIR

FLD

GMM
GOP
GPSC
GVF

IBMCTF

JBIG
JPEG
Kbps
LIpP
LIS
LMS

LSP

MC-EZBC

MCTF

MF

Embedded Zerotree Waveiet

Facial Animation Parameters
Filter Banks

Forward Error Correction
Fine-Granularity Scalability

Finite Impulse Response

Fisher Linear Discriminant
frame per second
Gaussian Mixture Models

Group of Pictures

Generalised Predictive Shape Coding
Gradient Vector Flow

In-band MCTF

International Telecommunication Union
Joint Bi-level Image experts Group

Joint Photographic Experts Group
Kilobits per second

List of Insignificant Pixels

List of Insignificant Sets

Least Mean Square

List of Significant Pixels

Ma:;imization of A posteriori Probability
Megabits per second

Motion Compensation

Motion Compensated Embedded Zero Block Coding
Motion Compensated Temporal Filtering
Motion Estimation

Motion-Failure regions
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ML
MORF

MPEG

MSB

MTh

OAVE
OBMC
OTS

PCA
PCRD

PR

PSNR
QCIF

QP

RLC

ROI
SA-DCT
SA-DWT
SA-EBCOT
SA-SPECK
SA-SPIHT
s¢

SIF

SNR

Maximal Likelihood

Morphological Open by Reconstruction Filter
Motion Picture Experts Group
Magnitude Refinement

Markov Random Field

Most Significant Bit

Motion threading

Motion Vector

Neural networks

Object Adaptive Vertex Encoding
Overlapped Block Motion Compensation
Object-based Temporal Scalability
Principal Component Analysis
Post-Compression Rate-Distortion
Perfect Reconstruction

Peak-to-peak Signal to Noise Ratio
Quarter Common Intermediate Format
Quantisation Parameter

Run-Length Coding/Coder
Region-of-interest

Shape-adaptive DCT

Shape-adaptive Discrete Wavelet Transform
Shape-adaptive EBCOT algorithm
Shape-adaptive SPECK algorithm
Shape-adaptive SPIHT algorithm

Sign Coding

Storage Intermediate Format

Signal to Noise Ratio
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SOT
SPECK
SPIHT
SVC

SVM

UMA
VLC
VLD
VO
VOL

vop

Zc

Spatial Orientation Tree

Set Partitioning Embedded BlocK
Set Partitioning in Hierarchical Trees
Scalable Video Coding

Support Vector Machine
Uncovered Background

Unequal error protection

Universal Multimedia Access
Variable-Length Coding/Coder
Variable-Length Decoding/Decoder
Video Object

Video Object Layer

Video Object Plane

Weighted Least Squares

Zero Coding
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